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Abstract 

The paper addresses an algorithm to perform an analysis on survey data tables with some irreliable entries. The algo-
rithm has almost linear complexity depending on the number of elements in the table. The proposed technique is based 
on a monotonicity property. An implementation procedure of the algorithm contains a recommendation that might be 
realistic for clarifying the analysis results. 
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1. Introduction 

Situations in which customer responses being studied are measured by means of survey 

data arise in the market investigations. They present problems for producing long-term 

forecasts because the traditional methods based on counting the matching responses in the 

survey with a large customer population are hampered by unreliable human nature in the 

answering and recording process. Analysis institutes are making considerable and expen-

sive efforts to overcome this uncertainty by using different questioning techniques, includ-

ing private interviews, special arrangements, logical tests, “random” data collection, ques-

tionnaire scheme preparatory spot tests, etc. However, percentages of responses represent-

ing the statistical parameters rely on misleading human nature and not on a normal distri-

bution. It appears thereby impossible to exploit the most simple null hypothesis technique 

because the distributions of similar answers are unknown. The solution developed in this 

paper to overcome the hesitation effect of the respondent, and sometimes unwillingness, 

rests on the idea of searching so-called “agreement lists” of different questions. In the 

agreement list, a significant number of respondents do not hesitate in choosing the identical 

answer options, thereby expressing their willingness to answer. These respondents and the 

agreement lists are classified into some two-dimensional lists – "highly reliable blocks". 

                         
* The idea explained also in http://www.datalaundering.com/download/cleaning.pdf appears to be clear for those indif-

ferent to higher level of abstraction. 
** Residence in Denmark since 1980, Ph.D. in computer science, assoc. Prof., economic division, 

Tallinn Technical University, Estonia (from 1979 - 1980). 

http://www.datalaundering.com/download/cleaning.pdf
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For survey analysts with different levels of research experience, or for the people 

mostly interested in receiving results by their methods, or merely for those who are famil-

iar with only one, "the best survey analysis technique", our approach has some advantages. 

Indeed, in the survey, data are collected in such a way that can be regarded as respondents 

answering a series of questions. A specific answer is an option such as displeased, satis-

fied, well contented, etc. Suppose that all respondents participating in the survey have been 

interviewed using the same questionnaire scheme. The resulting survey data can then be 
arranged in a table  qixX  , where qix   is a Boolean vector of options available, while 

the respondent i is answering the question q. In this respect, the primary table X  is a col-

lection of Boolean columns where each column in the collection is filled with Boolean 

elements from only one particular answer option. Our algorithm will always try to detect 

some highly reliable blocks in the Table X  bringing together similar columns, where only 

some trustworthy respondents are answering identically. Detecting these blocks, we can 

separate the survey data. Then, we can reconstruct the data back from those blocks into the 
primary survey data table  qixX   format, where some "non-matching/ doubtful" an-

swers are removed. Such a "data-switch" is not intended to replace the researchers’ own 

methods, but may be complementary used as a "preliminary data filter” - separator. The 

analysts’ conclusions will be more accurate after the data-switch has been done because 

each filtered data item is a representative for some "well known subtables". 

Our algorithm in an ordinary form dates back to Mullat (1971). At first glance, the ordi-

nary form seems similar to the greedy heuristic (Edmonds 1971), but this is not the case. 

The starting point for the ordinary version of the algorithm is the entire table from which 

the elements are removed. Instead, the greedy heuristic starts with the empty set, and the 

elements are added until some criterion for stopping is fulfilled. However, the algorithm 

developed in the present paper is quite different. The key to our paper is that the properties 

of the algorithm remain unchanged under the current construction. For matching responses 

in the Boolean table, it has a lower complexity. 
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The monotone property of the proposed technique - “monotone systems idea” - is a 

common basis for all theoretical results. It is exactly the same property (iii) of submodular 

functions brought up by Nemhauser et al. (1978, p.269). Nevertheless, the similarity does 

not itself diminish the fact that we are studying an independent object, while the property 

(iii) of submodular set functions is necessary, but not sufficient. 

From the very start, the theoretical apparatus called the "monotone system" has been 

devoted to the problem of finding some parts in a graph that are more "saturated" than any 

other part with "small" graphs of the same type (see Mullat, 1976). Later, the graph presen-

tation form was replaced by a Markov chain where the rows-columns may be split imple-

menting the proposed technique into some sequence of submatrices (see Mullat, 1979). 

There are numerous applications exploiting the monotone systems ideas; see Ojaveer et al. 

(1975). Many authors have developed a thorough theoretical basis extending the original 

conception of the algorithm; see Libkin et al. (1990) and Genkin and Muchnik (1993). 

The rest of the paper is organized as follows. In SSeeccttiioonn  22, a reliability criterion will be 

defined for blocks in the Boolean table B . This criterion guarantees that the shape of the 

top set of our theoretical construction is a submatrix - a block; see the PPrrooppoossiittiioonn  11. How-

ever, the point of the whole monotone system idea is not limited by our specific criterion 

as described in SSeeccttiioonn  22. This idea addresses the question: How to synthesize an analysis 

model for data matrix using quite simple rules? In order to obtain a new analysis model, 

the researcher has only to find a family of  -functions suitable for the particular data. The 

shape of top sets for each particular choice of the family of  -functions might be different; 

see the note prior to our formal construction. For practical reasons, especially in order to 

help the process of interpretation of the analysis results, in SSeeccttiioonn  33 there are some rec-

ommendations on how to use the algorithm on the somewhat extended Boolean tables B . 

SSeeccttiioonn  44 is devoted to an exposition of the algorithm and its formal mathematical proper-

ties, which are not yet utilized widely by other authors. 
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2. Reliability Criterion 

In this Section we deal with the criterion of reliability for blocks in the Boolean tables 

originating from the survey data. In our case we analyze the Boolean table  jibB   rep-

resenting all respondents  n,...,i,..., 1 , but including only some columns  m,...j,...,1  

from the primary survey data table  qixX  ; see above. The resulting data of each table 

B  can be arranged in a mn   matrix. Those Boolean tables are then subjected to our algo-

rithm separately, for which reason there is no difference between any subtable in the pri-

mary survey data and a Boolean table. A typical example is respondent satisfaction with 

services offered, where 1 jib  if respondent i  is satisfied with a particular service j  

level, and 0 jib  if he is unsatisfied. Thus, we analyze any Boolean table of the survey 

data independently. 

Let us find a column j  with the most significant frequency F  of 1-elements among all 

columns and throughout all rows in table B . Such rows arrange a 1g  one column subt-

able pointing out only those respondents who prefer one specific most significant column j. 

We will treat, however, a more general criterion. We suggest looking at some significant 

number of respondents where at least F  of them are granting at least g Boolean 

1-elements in each single row within the range of a particular number of columns. Those 

columns arrange what we call an agreement list, ,...,g 32 ; g  is an agreement level. 

The problem of how to find such a significant number of respondents, where the F  cri-

terion reaches its global maximum, is solved in SSeeccttiioonn  44. An optimum table *S , which 

represents the outcome of the search among all “subsets” H  in the Boolean table B , is the 

solution; see Theorem I. The main result of the Theorem I ensures that there are at least F  

positive responses in each column in table *S . No superior subtable can be found where 

the number of positive responses in each column is greater than F . Beyond that, the agree-

ment level is at least equal to ,...,g 32  in each row belonging to the best subtable *S ; g  

is the number of positive responses within the agreement list represented by columns in 
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umns in subtable *S . In case of an agreement level 1g , our algorithm in SSeeccttiioonn  44 will 

find out only one column j  with the most significant positive frequency F  among all col-

umns in table B  and throughout all respondents, see above. Needless to say that it is 

worthless to apply our algorithm in that particular case 1g , but the problem becomes 

fundamental as soon as ,...,g 32 . 

Let us look at the problem more closely. The typical attitude of the respondents towards 

the entire list of options - columns in table B  can be easily "accumulated" by the total 

number of respondent i  positive hits - options selected: 





m,...,j

jii br
1

 . 

Similarly, each column - option can be measured by means of the entire Boolean table B  

as 





n,...,i

jij bc
1

 . 

It might appear that it should be sufficient to choose the whole table B  to solve our 

problem provided that n,...,i,gri 1 . Nevertheless, let us look throughout the whole 

table and find the worse case where the number m,...,j,c j 1  reaches its minimum F . 

Strictly speaking, it does not mean that the whole table B  is the best solution just because 

some "poor" columns (options with rare responses - hits) may be removed in order to raise 

the worst-case criterion F  on the remaining columns. On the other hand, it is obvious that 

while removing "poor" columns, we are going to decrease some ir  numbers, and now it is 

not clear whether in each row there are at least ,...,g 32  positive responses. Trying to 

proceed further and removing those "poor" rows, we must take into account that some of 

jc  numbers decrease and, consequently, the F  criterion decreases as well. This leads to 

the problem of how to find the optimum subtable *S , where the worst case - F  criterion 

reaches its global maximum? The solution is in SSeeccttiioonn  44. 
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Finally, we argue that the intuitively well adapted model of 100% matching 1-blocks is 

ruled out by any approach trying to qualify the real structure of the survey data. It is well 

known that the survey data matrices arising from questionnaires are fairly empty. Those 

matrices contain plenty of small 100% matching 1-blocks, whose individual selection 

makes no sense. We believe that the local worst case criterion F  top set, found by the al-

gorithm, is a reasonable compromise. Instead of 100% matching 1-blocks, we detect 

somewhat blocks less than 100% filled with 1-elements, but larger in size. 

3. Recommendations 

We consider the interpretation of the survey analysis results as an essential part of the 

research. This Section is designed to give a guidance on how to make the interpretation 

process easier. In each survey data it is possible to conditionally select two different types 

of questions: (1) The answer option is a fact, event, happening, issue, etc.; (2) The answer 

is an opinion, namely displeased, satisfied, well contented etc.; see above. It does not ap-

pear from the answer to options of type 1, which of them is positive or negative, whereas 

type 2 allows us to separate them. The goal behind this splitting of type 2 opinions is to 

extract from the primary survey data table two Boolean subtables: table B , which in-

cludes type 1 options mixed with the positive options from type 2 questions, and table B  

where type 1 options are mixed together with the negative type 2 options - opinions. It 

should be noticed that doing it this way, we are replacing the analysis of primary survey 

data by two Boolean tables where each option is represented by one column. Tables B  

and B  are then subjected to the algorithm separately. 

To initiate our procedure, we construct a subtable 
1K  implementing the algorithm on 

table B . Then, we replace subtable 
1K  in B  by zeros, constructing a restriction of table 

B . Next, we implement the algorithm on this restriction and find a subtable 
2K , after 

which the process of restrictions and subtables sought by the algorithm may be continued. 

For practical purposes we suggest stopping the extraction with three subtables: 
1K , 

2K  

and 
3K . We can use the same procedure on the table B , extracting subtables 

1K , 
2K  

and 
3K . 
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The number of options-columns in the survey Boolean tables B  is quite significant. 

Even a simple questionnaire scheme might have hundreds of options - the total number of 

options in all questions. It is difficult, perhaps almost impossible, within a short time to 

observe those options among thousands of respondents. Unlike Boolean tables B , the 

subtables 
321 ,,K  have reasonable dimensions. This leads to the following interpretation op-

portunity: the positive options in 
321 ,,K  tables indicate some most successful phenomena in 

the research while the negative options in 
321 ,,K  point in the opposite direction. Moreover, 

the positive and negative subtables 
321 ,,K  enable the researcher in a short time to “catch” 

the “sense” in relations between the survey options of type 1 and positive/negative options 

of the type 2. For instance, to observe all Pearson’s r correlation’s a calculator has to per-

form )mn(O 2  operations depending on the mn   table dimension, n -rows and m -

columns. The reasonable dimensions of the subtables 
321 ,,K  can reduce the amount of 

calculations drastically. Those subtables - blocks 
321 ,,K , which we recommend to select in 

the next Section as index-function )H(F  top sets found via the algorithm, are not em-

bedded and may not have intersections; see the PPrrooppoossiittiioonn  11. Concerning the interpreta-

tion, it is hoped that this simple approach can be of some use to researchers in elaborating 

their reports with regard to the analysis of results. 

4. Definitions and Formal Mathematical Properties of the Algorithm 

In this Section, our basic approach is formalized to deal with the analysis of the Boo-

lean mn   table B , n -rows and m -columns. Henceforth, the table B  will be the 

Boolean table B  - see above - representing certain options-columns in the survey data 

table. Let us consider the problem of how to find a subtable consisting of a subset maxS  of 
the rows and columns in the original table B  with the properties: (1) that  

j
jii gbr   

and (2) the minimum over j of 
i

jij bc   is as large as possible, precisely – the global 

maximum. The following algorithm solves the problem. 
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Algorithm. 

Step I. To set the initial values. 

 1i. Set minimum and maximum bounds a ,b  on threshold u  for jc  values. 

Step A. To find that the next step B produces a non-empty subtable. 

 1a. Test u  as 2/)ba(   using step B. 
  If it succeeds, replace a  by u . If it fails replace b  by u . 
 2a. Go to 1a. 

Step B. To test whether the minimum over j  can be at least u . 

 1b. Delete all rows whose sums gri  . 
  This step B fails if all must be deleted; return to step A. 

 2b. Delete all columns whose sums uc j  . 
  This step B fails if all must be deleted, return to step A. 
 3b. Perform step T if none deleted in 1b and 2b; otherwise go to 1b. 

Step T. To test that the global maximum is found. 

 1t. Among numbers jc  find the minimum. 
  With this new value as u  test performing step B. 
  If it succeeds, return to step A. If it fails final stop. 

Step B performed through the step T tests correctly whether a submatrix of B  can have 

the rows sums at least g  and the column sums at least u . Removing row i , we need to 

perform no more than m  operations to recalculate jc  values; removing column j , we 

need no more than n -operations. We can proceed through 1b no more than n -times and 

through 2b, m -times. Thus, the total number of operations in step B is )nm(O . The step 

A tests the step B no more than n2log  times. Thus, the total complexity of the algorithm is 

)nmn 2O(log  operations. 

Note. It is important to keep in mind that the algorithm itself is a particular case of our 

theoretical construction. As one can see, we are deleting rows and columns including their 

elements all together, thereby ensuring that the outcome from the algorithm is a submatrix. 

But, in order to expose the properties of the algorithm, we look at the Boolean elements 

separately. However, in our particular case of  -functions it makes no difference. The dif-

ference will be evident if we utilize some other family of  -functions, for instance 

)c,rmax(c jij . We may detect top binary relations, which we call kernels, different 
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from submatrices. It may happen that some kernel includes two blocks - one quite long in 

the vertical direction and the other - in the horizontal. All elements in the empty area be-

tween these blocks in some cases cannot be added to the kernel. In general, we cannot 

guarantee either the above low complexity of the algorithm for all families of  -functions, 

but the complexity still remains in reasonable limits. 

We now consider the properties of the algorithm in a rigorous mathematical form. Be-

low we use the notation BH  . The notation H  contained in B  will be understood in an 

ordinary set-theoretical vocabulary, where the Boolean table B  is a set of its Boolean 

1-elements. All 0 -elements will be dismissed from the consideration. Thus, H  as a bi-

nary relation is also a subset of a binary relation B . However, we shall soon see that the 

top binary relations - kernels from the theoretical point of view are also submatrices for our 

specific choice of  -functions. Below, we refer to an element we assume that it is a Boo-

lean 1-element. 

For an element B  in the row i  and column j  we use the similarity index jc  if 

gri   and 0  if gri  , counting only on Boolean elements belonging to H . The 

value of   depends on each subset BH   and we may thereby write )H,(  : the 

set H  is called the  -function parameter. The  -function values are the real numbers - 

the similarity indices. In SSeeccttiioonn  22 we have already introduced these indices on the entire 

table B . Similarity indices, as one can see, may only concurrently increase with the “ex-

pansion” and decrease with the “shrinking” of the parameter H . This leads us to the fun-

damental definition. 

Definition 1. Basic monotone property. By a monotone system will be understood a family 

 BH:)H,(   of  -functions, such that the set H  is to be considered as a pa-

rameter with the following monotone property: for any two subsets GL   representing 

two particular values of the parameter H  the inequality )G,()L,(    holds for 

all elements B . 
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We note that this definition indicates exactly that the fulfilment of the inequality is re-

quired for all elements B . However, in order to prove the Theorems 1,2 and the  

PPrrooppoossiittiioonn  11, it is sufficient to demand the inequality fulfilment only for elements L ; 

even the numbers   themselves may not be defined for L . On the other hand, the  

fulfilment of the inequality is necessary to prove the argument of the TThheeoorreemm  33 and the 

PPrrooppoossiittiioonn  22. It is obvious that similarity indices jc  comply with the monotone sys-

tem requirements. 

Definition 2. Let )H(V  for a non empty subset BH   by means of a given arbitrary 

threshold u  be the subset   u)H,(:B)H(V  . The non-empty H -set 

indicated by S  is called a stable point with reference to the threshold u  if 

)S(VS   and there exists an element  S , where  u)S,( . See Mullat 

(1981, p.991) for a similar concept. 

Definition 3. By monotone system kernel will be understood a stable set *S  with the 

maximum possible threshold value max
* uu  . 

We will prove later that the very last pass through the step T detects the largest kernel 
*

p S . Below we are using the set function notation )X,()X(F X  min . 

Definition 4. An ordered sequence 110 d,...,,   of distinct elements in the table B, 
which exhausts the whole table,  j,i jibd  , is called a defining sequence if there ex-

ists a sequence of sets p  . . .10  such that: 

A. Let the set  11kk =H  dk ,...,,  . The value )H,( kk  of an arbitrary element 

jk   , but 1 jk   is strictly less than )(F j 1 , 110  p,...,,j . 

B. In the set p  there does not exist a proper subset L , which satisfies the strict ine-

quality )L(F)(F p < . 

Definition 5. A subset *D  of the set B  is called definable if there exists a defining se-

quence 110 d,...,,   such that *
p D . 

Theorem 1. For the subset *S  of B  to be the largest kernel of the monotone system - to 

contain all other kernels - it is necessary and sufficient that this set is definable: 
** DS  . The definable set *D  is unique. 

We note that the existence of the largest kernel will be established later by the TThheeoorreemm  33. 
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Proof. 

Necessity. If the set *S  is the largest kernel, let us look at the following sequence of 

only two sets *SB  10  . Suppose we have found elements k,...,  10  in 
*SB\  such that for each k,...,i 1  the value  ),...,B,( ii 10  \ . is less than 

max
o uu  , and k,...,  10  does not exhaust *SB\ . Then, some 1k  exists in 

 k
* ,...,)SB( 0\\  such that   *

k
*

k u),...,)SB(,(   01 \\ . For if not, then 

the set  k
* ,...,)SB( 0\\  is a kernel larger than *S  with the same value *u . Thus 

the induction is complete. This gives the ordering with the property (a). If the property 

(b) failed, then *u  would not be a maximum, contradicting the definition of the kernel. 

This proves the necessity. 

 Sufficiency. Note that each time the algorithm - see above - passes the step T, some 
stable point S  is established as a set  Sj , 110  p,...,,j , where 

)S,(u Sj   min . Obviously, these stable points arrange an embedded chain of 

sets *
p D...B   10 . Let a set BL   be the largest kernel. Suppose 

that L is a proper subset of *D , then by property (b), )L(F)D(F *   and so *D  is 

also a kernel. The set L  as the largest kernel cannot be the proper subset of *D  and 

must therefore be equal to *D . Suppose now that L  is not the subset of *D . Let sH  be 

the smallest set  11  dkkk ,...,,=H   which includes L . The value )H,( ss  by 

our basic monotone property must be grater than, or at least equal to *u , since s  is an 

element of sH  and it is also an element of the kernel L  and sHL  . By property (a) 

this value is strictly less than )(F j 1  for some 110  p,...,,j . But that contradicts 

the maximality of *u . This proves the sufficiency. Moreover, it proves that any largest 

kernel equals *D  so that it is the unique largest kernel. This concludes the proof.  

Proposition 1. The largest kernel is a submatrix of the table B . 

Proof. Let *S  be the largest kernel. If we add to *S  any element lying in a row and a col-

umn where *S  has existing elements, then the threshold value *u  cannot decrease. So 

by maximality of the set *S  this element must already be in *S .  
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Now, we need to focus on the individual properties of the sets p...   10 , 

which have a close relation to the case maxuu   - a subject for a separate inquiry. Let us 

look at the step T of the algorithm originating the series of mapping initiating from the 

whole table B  in form of ),...B(V(V),B(V  with some particular threshold u . We denote 

))B(V(V  by )B(V 2 , etc.  

Definition 6. The chain of sets ),...B(V),B(V,B 2  with some particular threshold u is 

called the central series of monotone system; see Mullat (1981) for exactly the same no-

tion. 

Theorem 2. Each set p...   10  in the defining sequence 110 d,...,,   is the 

central series convergence point )B(V k
,...,k 32lim   as well as the stable point for some 

particular thresholds values )S(Fu...uu)W(F *
n  10 . Each j  is the 

largest stable point - including all others for threshold values )(Fuu jj  . 

It is not our intention to prove the statement of Theorem 2 since this proof is similar to 

that of Theorem 1. TThheeoorreemm  11 is a particular case for Theorem 2 statement regarding 
threshold value puu  . 

Next, let us look at the formal properties of all kernels and not only the largest one 
found by the algorithm. It can easily be proved that with respect to the threshold pmax uu   

the subsystem of all kernels classifies a structure, which is known as an upper semilattice 

in lattice theory. 

Theorem 3. The set of all kernels - stable points - for maxu  is a full semilattice. 

Proof. Let    be a set of kernels and let 1K  and 2K . Since the inequalities 

u)K,( 1 , u)K,( 2  are true for all 1K  and 2K  elements on each 21 K,K  

separately, they are also true for the union set 21 KK   due to the basic monotone 

property. Moreover, since maxuu  , we can always find an element 21 KK   

where u)KK,(  21 . Otherwise, the set 21 KK   is some H -set for some u  

greater than maxu . Now, let us look at the sequence of sets )KK(V k
21  , ,...,k 32 , 

which certainly converges to some non empty set - stable point K. If there exists any 
other kernel 21 KKK  , it is obvious, that applying the basic monotone property 

we get that KK  .  
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With reference to the highest-ranking possible threshold value maxp uu  , the statement of 

TThheeoorreemm  33 guarantees the existence of the largest stable point and the largest kernel *S  

(compare this with equivalent statement of TThheeoorreemm  11). 

Proposition 2. Kernels of the monotone system are submatrices of the table B . 

Proof. The proof is similar to PPrrooppoossiittiioonn  11. However, we intend to repeat it. In the  

monotone system all elements outside a particular kernel lying in a row and a column 

where the kernel has existing elements belong to the kernel. Otherwise, the kernel is not 

a stable point because these elements may be added to it without decreasing the  

threshold value maxu . 

Note that PPrrooppoossiittiioonnss  11,2 are valid for our specific choice of similarity indices jc . 

The point of interest might be to verify what  -function properties guarantee that the 

shape of the kernels still is a submatrix. 

The defining sequence of table B  elements constructed by the algorithm represents 

only some part pu...uuu  210  of the threshold values existing for central series in 

the monotone system. On the other hand, the original algorithm, Mullat (1971), similar to 

the inverse greedy heuristic, produces the entire set of all possible threshold values u  for 

all possible central series, what is sometimes unnecessary from a practical point of view. 

Therefore, the original algorithm always has the higher complexity. 
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