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SKCTPEMAIbHbLIE NOOCUCTEMbl MOHOTOHHBLIX CUCTEM. I
Wn. 3. MYNNAT
(TannuH)

Ipennaraercss KOHCTPYKTHBHAs IIPOLEAypa IOCTPOCHHS OCOOBIX ONPENENIOMNX HOCIEeI0BATeIbHOCTEH die-
MEHTOB MOHOTOHHBIX CHUCTEM, PaccCMOTpeHHbIX B [1]. M3ywaioTcst B3aHMHBIE CBOMCTBA JBYX OINpEEISIONIMX

nocyiegoBatenbHocTe OL— u Ol4, M TOTy4eHHBIH pesynsTaT (OpMymHpyeTcs B BHJE TEOPEMBI JIBOM-
cTBeHHOCTH. Ha ocHOBE TeopeMbl JBOWCTBEHHOCTH OMMCAH CHOCOD CYXKEHMs 00JacTH IIOMCKA KCTPEMabHbIX
TIOACUCTEM — ANIEP MOHOTOHHOIT CHCTEMBI U IIpuBEICHA COOTBETCTBYIOIIAs CXEMa ITOUCKa.

1. Beenenue

B [1] pa3paboTan ocHOBHOW anmapaT BbIJEICHHsSI B MOHOTOHHBIX CUCTEMax
0COOBIX MOJACHCTEM — Sfep, OOJIANAIOIINX SKCTPEMANbHBIMH CBOMCTBaMHU.
OCHOBHBIM  TIOHSTHEM  pa3BUTOTO  ammapara SBISIETCS  ONpeAeTrMOoe
MHOXeECTBO [2]. B mnpuHSTON TEPMHHOIOTMH OIPEIEIIMMOE MHOKECTBO
OKa3bIBa-eTCs HAaUOOJBIIMM SIPOM MOHOTOHHOH CHCTEMBI B3aUMOCBSI3aHHBIX
aseMeH-ToB. [ToHsaTHE onpenenumMoro MHOXecTBa B [1] BBOAMIIOCH C TOMOLIbIO
IPEA-NONOKEHU ~ CYLIECTBOBAaHMUM  OCOOBIX  IOJIOCIIEN0BATENBLHOCTEN
DIIEMEHTOB M3y4aeMoii CHCTEMBI, HA3BAHHBIX ONPEAC-SIOMWMME (0L u o) —

IOCJICI0BATCIIbHOCTAMMU.

B nmamHOI paboTe BOMPOC CYMIECTBOBAHUS OMPEACISIONINX MTOCIEI0ATEITh-
HOCTEH pemnraeTcsi KOHCTPYKTUBHO B BHJAE MPOLEAyp — anroputMoB. OCHOB-
HBIE CBOMCTBA ONPENEISAIONIEH MOCIEN0BATEIbHOCTH, IOCTPOEHHON O MpaBU-
JIaM IPOLEAYPHl U MCUEPIBIBAIOIIEN BCE MHOYKECTBO AJIEMEHTOB CUCTEMBI W,

TapaHTUPYETCS TEOPEMOM.

PaccmarpuBaeTrcst Takxke BOIPOC O TOM, Kakasl CyILECTBYET CBA3b MEXIY
OTIPENIENAIOIIMH TI0CIIEA0BATENILHOCTIMU o- 1 o, . MoXHO MPEITION0XKHUTB,
YTO €CJIM IOCTPOEHA ONPENENISIONAsl OCIEN0BATENILHOCTD O, , TO CTOHUT B3STh
9Ty HOCJIE[0BATEIFHOCTE B OOpPaTHOM HOPAJKE, KaK IOJIyYUTCS o, Tocie-
JoBaTelbHOCTh. B o0mem cimydae 370 He Tak. TeM He MeHee MMEET MECTO
Oomnee cnmaboe ytBepkaeHue. Ha ocHoBe ompeneneHHbIX B [1] TOHATHIA
JUCKPETHBIX ACUCTBUM THNA © U © U Ha 3JIEeMEHThI cucTeMbl W TaHHOE YTBEp-
KIeHue GopMynupyercs 34echk B BUAE TEOpPEMBl IBOWCTBEHHOCTH. B ciyuae
BBINIOJIHEHUSI YCJIOBUHA TEOpPEMBl IBOMCTBEHHOCTH H3JIOKEHHBIE alITOPUTMBI
MOCTPOEHHUS ONPEACISIIOIIUX [TOCIEN0BATENBHOCTEN UCTIONB3YIOTCS AT 3HAYH-
TENBHOTO CYXKEHHsI o0JlacTH Ioucka © u © saep cucteMsl W. Ajroputm
CYXEHHsI 00JIaCTH TOMCKA W3JI0KEH TakXKe B BHJE MPOIETYypPhl — KOHCTPYK-

THBHO.
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Extremal Subsystems of Monotonic Systems, II

Abstract. A constructive routine is considered for obtaining singular defining sequence
of elements of monotonic systems studied by Mullat (1976). The relationship between

two defining sequences o and a+ is also examined, and the obtained result is formu-

lated as a duality theorem. This theorem is used for describing a routine of restricting the
domain of search for extremal subsystems (or kernels of a monotonic system); the corre-
sponding search scheme is also presented.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

In Mullat (1976) we have developed the basic method of selection (from mono-
tonic systems) of singular subsystem, i.e., the kernels possessing extremal
properties. The main concept of this method is that of a definable set Mullat
(1971). In the terminology adopted by us, a definable set is the largest kernel of
a monotonic system of interrelated elements. In 1971 we introduced the con-

cept of a definable set with the aid of the system under consideration called
defining o_(o,) sequences.

In this paper the problem of existing of defining sequences is solved con-
structively in the form of routines (algorithms). The principal properties of
defining sequences sequence constructed according to the rules of a routine and
that exhausts the entire set of elements of the system W are specified by a

theorem.

We shall also examine the relationship between two defining sequences o
and o, . It can be assumed that after constructing a defining sequence o _, we

could take this sequence in inverse order, thus obtaining an o, sequence. But

in the general case this is not so. Nevertheless we can make a weaker assertion.
On the basis of the concepts (defined in Mullat (1976) of discrete operations of
type @ and © on the elements of a system W , this assertion will be formulated
below as a duality theorem. Under the conditions of the duality theorem, the
algorithms of construction of defining sequences described here will be used
foe considerably restricting the domain of search for @ and © kernels of the
system W . The algorithm of restriction of the domain of search is presented in

the form of a constructive routine.
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2. ROUTINE OF FINDING THE KERNELS

Below we describe a routine of construction of an ordered sequence o of all
the elements of W . In abbreviated form, this routine is called KSR (kernel-
searching routine).

This routine consists of rules of generation and scanning of an ordered

series of ordered sets <BJ> (sequences); here j varies from zero to a value p,

which is automatically determined by the rules of the routine, whereas the
elements of each sequence [, are selected from the set W .

This series <Ej> constructed by this rule forms a numerical sequence of
thresholds <uj> and a sequence of sets <Fj> . On the other hand the sequence of
thresholds governs the transactions from EH to Ej in the chain <Ej> , and the
sequence <FJ> terminates with a set, which is definable.

In the description of a rule we use the operation of extending a sequence Bj
by adjoining to it another sequence 7Y . This operation is symbolically ex-

pressed by E(— <E,?> This rule of construction of the sequence Ol of all
elements of the set W can be described stages: by step Z and R.

Z.In the set W we have found an element p, for which
© W(y,)=min_,m W(3)=F (W) ; we are constructing a defining se-
quence o_. The construction of o, is entirely similar and therefore not
presented here. We shall only indicate where it is necessary to invert the
sign of inequalities, and where the search for an element with the minimal
credential must be replaced by search for an element with maximal creden-
tial, so as to be able to construct o, . Thus the construction of O, the

sowT W(8) =F (W) condi-

tion. We shall write u, =m W(p,), @ ={p,) and the set I, = W. We
select a subset of elements ¥ from W such that 7 W\ a(y)<u,. The

element i, is obtained from ©"W(u,) = max

construction of O, requires the selection of such Y that

TW\a(y)2u,,u, =" W(u,) . After that we order the elements in a
certain manner (which can be arbitrary selected). The thus-obtained ordered
set is denoted by 7y . Let us write 3, =7.

Let us recall that in a) the brackets <,> denoted an ordered set; in the case under

consideration they denote an ordered set of ordered sets Bj .
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We construct a recursive routine for extending the sequences o and P, .

Here we denote by 3,(i) the 1i-th element of the sequence f3,. We specify
one after another the elements of the sequence Eo . At each instant of speci-
fication we extend the sequence o by the elements from EO of the se-
quence fixed at this instant. In accordance with the symbolic notation of the
operation of extension of a sequence o , we perform at each instant t of
specification the operation o <« <6,B0(t)> . Suppose that all the
elements of EO up to B,(i—1) inclusive have been fixed. Then the
sequence o, will have the form <MO,BO 1),B,(2),....8,0 - 1)> , which corre-
sponds to the symbolic notation of the operation of extension of the se-
quences O ¢— <a,BO(1),BO(2),...,BO(i—1)> in the case that QU inside the
brackets consists of one element |, . Let us consider an element 3 (i—1)
of the sequence EO At the instant of specification of the element ,(i—1)
we decide during the above-mentioned operation of extension of O also

about any further extension or about stopping the extension of the sequence
B, .- We must check the following two conditions:

a) In the set W\ o there exist elements such that T W\ o(y)<u, In

constructing O, , this condition is replaced by ©'W \ a(y) 2 u,;

b) the element (,(i) is defined for the sequence Eﬂ By assumption an
element B,(1) to be defined for a sequence EO if the sequence EO has

an element with an ordinal number 1. Otherwise the element Bo (1) is

not defined. There can be four cases of fulfillment or no fulfillment of

these conditions. In two cases, when the first condition is satisfied, irre-
spective of whether or not the second condition holds, the sequence 3,

will be extended. This means that the set of elements ¥ in W\a
specified by the first condition is ordered in the form of sequence 7y .
The sequence EO is extended in accordance with the formula

EO “«— <E,?> . In case when the first condition is not satisfied, whereas

the second condition is satisfied, we shall fix the element 3 (i) and at

the same time extend the sequence o, i.e., O < <a,[30 (1)> , and pro-

ceed to new recursion stage. In case neither the first nor the second con-
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dition holds, the sequence EO will not be extended nor the last fixed ele-

ment in the sequence f3,

will be the element B,(1—1). Suppose that we
have fixed all the elements of the sequence EJ By that time we have

constructed a sequence O . Let us consider the set W \ @ and the cre-
dential system IT"W \ o . We shall find an element in IT"'W \ & on

which the minimum is reached in the credential system IT"W \ & . The

obtained element is denoted by i, . We obtain o, the element p
s W a(8)=F (W\a) condi-
)=F(W\a). Let us write
u, =n W\a(u,, ), and for the set I' =W\ a; then we supple-

from the W \a(p,,)=max
tion:.  Thus, 7 W\a(u,,
ment the sequence OU by the element [, i.e., O ¢ <a, uw>. In the
same way as during the zero step, we select a subset of elements Y from
W\ such that T W \a(y)<u

of elements Y such that 7"W \'a(y) > u,, . The selected set can be or-

i+ 1- Here we select for o, aset
dered in any manner. The ordered set is denoted by 7Y . The set Bjﬂ is

assumed to be equal to v .

By analogy with previous b) the recursion step will be described as a re-
cursion routine. At this stage we also use the rule of extension of the se-
quences . and B, . Suppose that we have fixed all elements of 3., up

to PB,(i—1) inclusive. Then the sequence o will have the form
o= <a, 1B, M, B, G- 1)>, where o denotes the sequence o ob-
tained at the instant of fixing all the elements of Bj, or, to rephrase, the
sequence o, prior to the (j+1)-th step. The last equation corresponds
to the symbolic operation of extension of the sequence
a:(a, w,B,(M),.... B, —1)> in the case that o inside the brackets
denotes the sequence (a, uw>. Let us consider an element 3, (1—1)
of the sequence Ew . At the instant of fixing the element , (1—1) we

decide about a further extension or about stopping the extension of the
sequence [3,,. For this purpose we consider the credential system

IT"W \ @ and we check two conditions:
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1) The set W\a contains elements Yy  such that
© W\ a(y)<u,, For constructing o, we must take elements
Y suchthat T W\a(y)>u_ ;

j+1 2

2) theelement B, (i) is defined for the sequence Bjﬂ .

By analogy with the step Z, we find that the sequence Bjﬂ is extended in

two cases in which the first condition is satisfied irrespective of whether
or not the second condition holds. The set of elements Y in W\ o
specified by the first condition is ordered in the form of a sequence Y.

The sequence Bjﬂ is extended in accordance with the formula

B.. <—<Ej+l,?>. In the case that the first condition does not hold,
whereas the second condition is satisfied, the element B (i) will be
fixed and at the same time we extend the sequence o, i.e.,
o« <6,Bjﬂ(i)> , and after that we proceed again in accordance with
the rules of Stage 2 of the recursion routine of extension of the sequence
Ejﬂ . In the case that neither the first, nor the second condition holds, the
sequence Bjﬂ will not be extended, and the last fixed
element of the sequence Bjﬂ will be the element B, (1—1). At some

step p the sequence O will exhaust the entire set of elements W .

Theorem 1. A sequence o constructed on the basis of a collection of
credential system {H’H| HgW} is a defining sequence o , whereas a
sequence o constructed on the basis of {H+H| HgW} is a defining

sequence O, .

The first part of the theorem (for o _) is proved in Appendix 1. The second

part (for o, ) can be proved in the same way.

NBI1. Let us note that a sequence o constructed by KSR rules has somewhat

stronger properties than required in obtaining a defining sequence. More
precisely, there does not exist a proper subset L. for j=0,1,...,p—1 such that

[o>L>T,, and F(I)<F (L). This is not required for obtaining a defin-

ing sequence o (', ). The corresponding proof is not given here.
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NB2. Let us note another circumstance. With the aid of the kernel-searching
routine it is possible to effectively find (without scanning) the largest kernel,
i.e., a definable set. It is not possible to find an individual kernel strictly in-
cluded in a definable set (if the latter exists) by constructing a defining se-

quence.

3. DuALITY THEOREM

Let us establish a relationship between the defining sequences o_ and o, ofa

system W .

Theorem 2. Let o_ and o, be defining sequences of the set W with

respect to the collection of credential system {H’H| Hc W},
{H*H| Hc W} respectively. Let <F.’> be the subsequence of the sequence

)

A_ (j=0.,..,p) needed in the determination of a._, and let <F J+> be the

corresponding subsequence of the sequence A_ (j=0.,L,...,q) .

Hence if foran m and a n we have

E(@)=FE(T), )

then I_ c W\T",, ' c W\T_,.If

F([)<FE(T))? )

then I', c W\, ' cW\T, .

This theorem is important from two points of view. Firstly, under the condi-
tions (1) and (2) there exists a relationship between an o_ sequence and o, .

This relationship consists in the fact that elements of o, which are at the
“beginning” and form either the set W \I" or the set W\ will include all
the elements of the set I", that are at the “end” of ‘o._. The same applies also to
sets W\~

m+1

or W\T" which are at the beginning of @ _, since they include
in a similar way the set I'|. In other words, the theorem states that the se-
quence o, does not differ “very much” (under certain conditions) from the

sequence, which is the inverse to o_.

? Inthe following, the + and — sign will not be used twice in notation. This rule

applies also to Appendices 1 and 2
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Let us note that the conditions (1) and (2) are sufficient conditions, and it
can happen that actual monotonic systems satisfying these conditions do not
exist. Nevertheless, in the third part of this article, we shall describe actual
examples of such systems.

4. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM

We just noted that a defining sequence o, differs “slightly” from the inverse
sequence of o . For elucidating the possibility of a search for kernels on the
basis of the duality theorem, let us rephrase the latter. This assertion can be
formulated as follows: at the beginning of the sequence o, we often encounter

elements of the sequence o_, which are at the end of the latter.

Such an interpretation of the duality theorem yields an efficient routine of
dual search for @ and © kernels of the system W . This is due to the fact if the

elements are often encountered, there exists a higher possibility of finding a &
kernel at the beginning of the sequence o, as compared to finding it at the end

of o _; the same applies also to a © kernel in the sequence o .

The routine under construction is based on Corollaries I-IV of the duality

theorem presented in Appendix II, where we also prove this theorem.

The routine of dual search for kernels described below is an application of
two constructive routines, i.c., a KSR for constructing o, and a KSR for con-

structing ‘o_. The routine is stepwise, with two constructing stages realized at

each step, i.e., a stage in which the KSR is used for constructing o, with &

operations, and a stage in which the same routine is used for constructing o

with the aid of © operations on the elements of the system.

Z. At first we store two numbers: u, =F (W) and u, =0. After that we
perform precisely Stage 1 and 2 of the zero step of the KSR used for con-
structing the defining sequence ., . This signifies that the set W' contains
an element W, such that mw'W(u,)=max, ,n"W(5)=F (W). The
threshold u, is equal to ©"W(Q,), etc. By using the constructions of the
zero step of KSR at the previous stage of the dual routine under construc-
tion, we obtained a set I',"” € W . Then we examine the set W\T" and the
credential system IT"W\TI, . On the set o, with the credential system

I}, c I we perform a complete kernel-searching routine for the purpose

j+1
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of constructing a defining sequence of @ operations only for the set
WAT], . As aresult, we obtain in the set W\T'" a subset F on which the

function F reaches a global maximum among all the subsets of the set

WAL .

R. By applying the previous (j—1) steps to the ]-th step, we obtained a
sequence of sets I}/,I",...,I"", and according to the construction of a
defining sequence we have I'' DI ©...oI and I} =W . At
first we store two numbers: u’ =F (I"") and u; =F (H’) . By anal-

ogy, we perform the same construction consisting of two stages of a
KSR recursion step for constructing o, with the aid of @ operations.
At a given instant of such dual construction we obtained a set
[}, cI. Then we consider the set W\I'| and the credential sys-

tem IT"W\T . In the same way as at the zero step, we perform on
the set W\T ., a complete kernel-searching routine with the purpose
of constructing a sequence o_ only on the set W'\ l";] . As a result we
obtain in the set W\I'/ a subset H™' on which the function F

reaches a global maximum among all subsets of the set W\T .

S. Before starting the construction of the j—th step of the routine under

construction, we check the condition of a Rule of Termination of Con-
struction Routine:

u <u;. 3)

If (3) is satisfied as a strict inequality, the construction will terminate before the
j-th step. If (3) is an equality, the construction will terminate after the j-th
step.

5. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE

At the end of the construction process, the above routine yields a set H' or a
set H™'. It can be asserted that one of the sets is definable set or the largest
kernel of the system W with respect to a collection of credential system

{MH|Hc W},

The assertion is based on the following. Firstly, by applying the KSR we
obtained the second stage of the j-th step of a dual routine the maximal set
H™ among all the subsets of the set W\I'" on which the function F

reaches a global maximum in the system of sets of all the subsets of the set
WAT? . Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality

j+l
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theorem), it follows that, prior to the j-th step and provided that (3) is a strict
inequality, the largest kernel (a definable set) will be contained in the set
WAT ., or it follows from the Corollary 2 of the Theorem 2, if (3) is a equal-

ity, that the largest kernel is included in the set W\, .

. . i +1
Thus by comparing these two remarks we can see that either H” or H”

is a definable set.

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find

by similar dual routine also the largest kernel K ®- definable set. This asser-

. . . ' 1
tion can be proved in the same way as the assertion about H' and H’ ', there-
fore this proof is not given here.

APPENDIX 1

Proof of Theorem 1. We shell prove that a sequence & constructed by the

KSR rules is a defining sequence for a collection of credential systems
{MH|Hc W},

First of all let us recall the definition of a defining sequence of elements of
the system W . We shall use the notation A_ =<HO,H1,...,Hk_]>, where
H,=W, H, =H \a (i=0,,...k—2). A sequence of elements of a set
W  is said to be defining with respect to a coalition of credential system
{H’H| Hc W} if the sequence A_ has a subsequence of sets

I_= <F r ,Fp> , such that

a 0oL oeee

a) The credential © H,(at,) of any element o, of the sequence o that

belongs to the set I, but does not belong to the set I', , is strictly

j+1?
smaller than the credential of an element with minimal credential
with respect to the set T ie, mwH/(a)<F(,),

12

j=01,.,p-17;

b) the set I'’ does not have a proper subset L such that the strict ine-
quality F (I')) <F (L) is satisfied (the “~” symbol has been omit-

ted; see previous footnote).

* In the definition of a+ sequence it is required that the following strict inequality be

satisfied: T'H, (o) >F.(T,)), j=0,1,..,q-1
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We shall consider a sequence of sets A_ and take the subsequence I', in
the form of the sets I', (j=0,1,...,p) constructed by the KSR rules. We have

to prove that sets I, have the required properties of a defining sequence. As-
suming the contrary carries out the proof.

Let us assume that Mullat property (1971) of a defining sequence is not sat-
isfied. This means that for any set l“j there exists in the sequence of elements

B, =(B,(1,8,(2),....
an element [3 (r) such that

mH, B,@)2FET,)=u, (A1)

Here V is the index number of the element |1, selected in Stage 1 of the

recursion step of the constructive routine of determination of @ ; in the vocabu-
lary of notation used in Mullat (1976) we have v =1(T")) .

According to the method of construction, the sequence BJ consists of
sequences y formed at the second stage of the j-th step of the constructive
routine. Let M be a set in a sequence of sets A _ such that the first element

(0} of the set M in the constructed sequence Ol is used at the second

i(M)
stage of the j-th step for constructing the sequence Y to which the element
B,(r) belongs. This definition of M shows that H , < M.

From the construction of the second stage of the _] -th step and the principal
property of monotonicity of © operations in the system we obtain the inequali-
ties

nH,, (B,(0) < M(B,(0)) <7 T (1) =, (A2)
By virtue of the above method of selection of the set Fj .4 from the se-

quence of sets <1"J> and of the properties of a fixed sequence EJ , we obtain at

the j-th step
u=nl(u)<nl, (u, )=u,, (A3)

where j=0,1,...p—1.
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According to the rule of constructing of the sequence o , the function F
reaches its value on the elements W, and p . The elements W, and W,
belong to the sets I’ and I, respectively; therefore the inequalities (A.1) —
(A.3) are contradictory.

Thus our assumption is not true and Mullat Property of the defining
sequence o, constructed by KSR rules has been proved.

Let as assume that Property b) does not hold, i.e., the last I’ of the

sequence <FJ> contains a proper subset L such that
F(@T)<F(L). (A4)

Let the element A € L, and suppose that it is the element with minimal or-

dinal number in o belonging to L ; moreover, let t denotes this number, i.e.,
t=1(L), a, =A . From the definition of t it follows that Lc H .

Our analysis carried out above for the set H , we repeat below for the set

T

H, . By analogy with the definition of the set M we define a set M' with the

aid of the element A and the sequence o .

The set M' is equated with the set of the sequence of sets A _ that begins
with an element used in the formation of a set y at the p-th step of the con-

structive routine such that A € .
By analogy with derivative of (A.2) we obtain
THR)<tM@R)z2nT (u)=u, . (A.5)
Since F(L)<mL(A), it follows from (A.4) and (A.5) that
nH () <nLQ}).
We noted above that L < H,, by virtue of the monotonicity of © opera-

tions, it hence follows that

rL)<TH®).

The last two inequalities are contradictory, and hence Property b) of the de-

fining sequence is satisfied.
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Thus we have proved that the sequence O constructed by the KSR rules is
a defining sequence with respect to a collection of credential systems

{lTH| Hc W}, and hence it can be denoted by O, whereas the sequence

<1"J> obtained by a constructive routine can be denoted by I’

APPENDIX 2

Proof of Duality Theorem. Below we shall show that I, < W\T_, if

F{I)=F () (we omit a twice notation of + and — symbols; a promised

above the + and — sign will not be used twice in notation. This rule have been

applied also to Appendices 1 and 2.

Let us assume that there exists an element &€ " and that E€ T, ie.,

m m+l 2

I’ cW\TI, . Hence follows that we have defined a credential nl"’ ().

n+l n+l

According to the definition of the function F, we have the inequality
7.Cl—‘nil (&) S F(]‘—‘nil) *

For a defining sequence o, and for any j=0,1,...,q—1 we have inequali-
ties

F( ) <FI). (A.6)

n+l

Let us consider an element g € 1—‘: with the smallest index number in a+ .

It follows from the definition of @, that

nl, (g) > F(I7,). (A7)

The choice of element g is convenient because it permits the use of Mullat
Property of a defining sequence (see Appendix 1), i.e., in this case the set F:

is in the form of H, =T". Since F(I'"") > ="’ (g) , we have proved (A.6).

Since &I, it follows that we have defined a credential nl” (). We

m

have the following chain of inequalities:

F(I) <l (&) < W(Q) =W () <l (S).

Let us recall that for any element & of the system W under consideration,
we have in a) the relation 7 W(3)=7"W(J3). The first inequality follows

from the definition of the function F , and the second inequality from the
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monotonicity of © operations. The equality follows from the definition of the
functions ©~ and ", whereas the last inequality follows from the monotonic-

ity of © operations.

By virtue of (A.6) and of the conditions of the theorem, we have also the
following chain of inequalities:

al7, (&) <F(L,) < F(IT) =K(T,).

n+l n+l

By supplementing this chain by the previous chain of inequalities, we hence
obtain ©l"’ (&) <ml(§). Since I, < T, it follows from the monotonicity

n+l
of @ operations that ntl" (§) <wl" (&) . The logical step used for obtaining
the last inequality is valid, and therefore the assumption that I < W\T is

n+l

untrue.
In the same way we can prove the inclusion I" € W\T_ . For this pur-
pose it suffices to change the signs of the inequalities and (whenever necessary)

to replace theset I', by I’ ,and I'_ by I',".

n+l 2

If condition (2) of the theorem holds, it is not necessary to use (A.6). In this
case the proof will be similar, being based on the following chain of inequali-
ties (The proof is based on assuming the contrary, so that I, ¢ W\TI',

n /7

i.e., there exists, as it were, an element €', and eI’ .):
nl, (§) <F(I)) <F(I) << nl’ (&) < W(§) <7l (§) .-

The first inequality follows from the definition of F(F}: ) , the second fol-

lows from Condition (2) of the theorem, and the third from the definition of
F(I'")) . The last two relations express the properties of monotonic systems.

Hence in this case we have under Condition (2) also

il (8) <7l (8).

This completes the proof of the theorem. ® Now follows several corollaries
of Theorem 2.

Corollary 1. If for n =0,q the defining sequence is o, there exists a sub-
set Hc W\T suchthat F (H)>F(I"") . Thus kernel K ® will belong to the
set W\T'. Indeed, since a definable set is also kernel, it follows that
FH)<FI ), m=0,,...p, and hence (in any case) if m=p, and n is
selected on the basis of the condition of the corollary, then F(I',) <F(I"") . By

virtue of the theorem, we therefore obtain the assertion of the corollary.
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Corollary 2. If for n =0,1,...,q —1 of a defining sequence E+ there exists

a subset Hc W\T" such that F (H)=F(I")), then the kernel K ® will be-
long to the set W\, .

The proof follows directly from Corollary 1, by virtue of (A.6).

Corollary 3. If for m=0,1,...,p of a defining sequence o _ there exists a
subset Hc W\ T, such that F.(H) <F(T",) then the kernel K © will belong
to the set W \T"_ . The proof of Corollary 3 is entirely similar to that of Corol-
lary 1. It is only necessary to change the signs of the inequalities and replace

theset I by I .

Corollary 4. If for m=0,1,...,p—1 of a defining sequence O_ there ex-

ists a subset Hc W\, such that F (H)=F(T,), then the kernel K © will
belong to the set W\T_ .
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