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Extremal Subsystems of Monotonic Systems i 

Abstract. In the exploration of complex systems, a pivotal aspect involves analyzing 
specific numerical data to comprehend the system's functioning. This effort often  
extends to identifying specialized elements or subsystems within the system, discerned 
by their consistent response to defined 'actions' and intricate 'relations' among homoge-
neous subsystems. Understanding these nuanced characteristics through rigorous mathe-
matical analysis, elucidating the underlying structure of the system, is crucial, particu-
larly as a foundation for conducting complex or resource-intensive statistical studies. 
The research explores this basic methodology to identify single-peak sequences that 
define components of what we call "monotonic systems," where peaks represent  
"kernels" and "hikes" are depicted as ”stable sets.” Furthermore, we extensively delve 
into an additional constructive methodology involving two defining sequences within 
monotonic systems. Through meticulous exploration, we uncover the complex relation-
ship between these defining sequences, ultimately leading to the formulation of the 
duality theorem. This theorem not only serves as a cornerstone in our understanding but 
also provides a systematic approach for limiting the search area for kernels and stable 
sets. In light of this, we present an algorithm designed specifically for the identification 
of extremal subsystems, namely kernels and stable subsets, within a monotonic system, 
encapsulated by a certain dual scheme. 
Keywords: monotonic; system; matrix; graph; cluster 

1. INTRODUCTION 

For the study of a complex system, it is often necessary to encounter the prob-
lem of analyzing numerical case data about the system functioning. Sometimes 
based on similar data it is required to show whether in the system there exist 
special elements or subsystems, reacting in one way to some “actions” as well 
as “relations” between one-type subsystems. Information on the existence of 
the indicated peculiarities or on the “structure” of the system under study is 
necessary, for example, before carrying out extensive or expensive statistical 
investigation. 

Concerning wide application of computational techniques, at the present 
time, to initial detection of the structure of a system an approach based on vari-
ous kind of heuristic models is planned (Braverman et al, 1974; McCormik, 
1972; Deutch, 1971; Zahn, 1971). For constructing models, many authors start 
with intuitive formulations of the problem and also with the form of presenta-
tion of the initial data (Võhandu, 1964; Терентьев, 1959). 

A natural form of presentation the data for the purpose of studying complex 
systems is that of a graph (Muchnik, 1974). A matrix, for example, a data ma-
trix (Hartigan, 1972) also serves as a widely spread carrier of information. 
Matrices and graphs easily admit isolation of two minimal structural units of 
the system: ”elements” and ”connections” between elements.1 In this paper the 
notions ”connections” and ”elements” are interrelated in a sufficiently broad 
fashion. Thus, sometimes it is desirable to consider connections in the form of 
elements of a system; in this case, it is possible to find more ”subtle” relations 
in the original system. 

                                                           
1  Analogous systems are called systems of interrelated elements in the literature. 
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Representation of the system in the form of a unique object, comprising 

elements and connections between them, enables a more precise understanding 

of the system's structure. This structure entails the organization of system ele-

ments into subsystems, delineated by a network of relationships between them. 

Such a structure may manifest as a natural amalgamation of subsystems into a 

cohesive whole, delineated by the strength or weakness of interconnections 

among its elements. This approach finds resonance in the work of Braverman et 

al. (1971), where the assembly of systems from interconnected elements is 

expounded upon, revealing assembly as a convenient macro language for  

expressing system structure. 

In system theory, conventional analysis often focuses on direct connections 

between elements. However, certain scenarios necessitate the consideration of 

indirect connections as well. These indirect connections are deemed dynamic 

relations, wherein the degree of interdependence is dictated by the subsystem in 

which each connection is assessed. Below, we delve into a particular subclass 

of such dynamic systems what we called as “monotonic systems.” 

The foundational property of monotonicity within these systems facilitates 

the delineation of a system's kernel. This kernel, as initially or primarily indi-

cated, serves as a reflection of the overarching structure of the entire system. 

Operating within the intrinsic framework of the system, a kernel constitutes a 

subsystem highly responsive to either positive or negative actions, thus deline-

ating the existence of both positive and negative kernels. 

The existence of kernels, which are specialized subsystems, is not left to 

chance within the mathematical model expounded in this paper; rather, it is a 

guarantee embedded within the very fabric of the model. The quest to "isolate" 

these kernels represents a quintessential challenge in the articulation of a 

"large" system in the parlance of a "small" system – the kernel. In a figurative 

sense, a kernel of a system embodies a subsystem whose removal invokes pro-

found and irrevocable alterations in the system's properties; it's akin to the sys-

tem relinquishing its established structure, akin to shedding its skin. 

In elucidating the subject matter, the discourse relies on the terminology and 

symbolism of set theory, a domain accessible to all without necessitating spe-

cialized knowledge. However, it warrants attention to the introduction of spe-

cific notation, as the framework developed within this paper introduces novel 

concepts and methodologies. This new apparatus serves as the cornerstone for 

the exploration and analysis of complex systems, offering insights into their 

underlying structure and behavior. 
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2. EXAMPLES OF MONOTONIC SYSTEMS  

In the present paper a monotonic system is defined, to be a system over 
whose elements one can perform positive and negative actions. In addition, 
positive actions increase certain quantitative indicators of the functioning of a 
system while the negative actions decrease those indicators. In the examples 
considered above the positive action is the addition of an element to a subsys-
tem while the negative action is removing an element from the subsystem; in 
the third example the converse holds. 

In examples, the kernel should possess an intuitive significance. For  
instance, in citation graphs, a negative kernel would represent publications 
extensively citing each other, typically authored by individuals from the same 
scientific school. Conversely, a positive kernel would comprise publications 
with fewer reciprocal citations, indicating representation from diverse scientific 
schools. 

In transport road networks, the intuitive essence of a kernel should be evi-
dent in the following manner. If we consider the elements of a communication 
network as the transportation routes, then a negative kernel would encompass a 
set of routes that, on average, experience a significant number of traffic conges-
tions–a sort of consensus among these routes. Conversely, a positive kernel 
would represent a collection of routes that, on average, encounter fewer traffic 
congestions, indicating smoother traffic flow. 

Alternatively, when the system elements are viewed as the transportation 
points within the network, a negative kernel would denote a landscape charac-
terized by mutually unreliable points. These points would exhibit a lack of 
dependability in facilitating transportation connections with one another. On 
the other hand, a positive kernel would depict a landscape comprising more 
dependable points, where transportation connections are more reliable and 
consistent. 

I.  Examining the complex organization behind the apparently random friend lists 
found on platforms like Facebook, Linkedin and other social networking media 
reveals a carefully structured system. Upon closer inspection, it becomes clear that 
these lists are not random, but rather follow a clearly defined pattern. Each user's 
friend’s list serves as a vital indicator, not only checking connections, but also  
offering information about mutual acquaintances and potential interests. This gives 
users the opportunity to make direct connections with new people, seamlessly  
integrating them into existing social circles. 

This process is not simply about expanding one’s social circle, but represents a 
purposeful desire to expand one’s social sphere. It is noteworthy that any exclu-
sion of a user from the friends list causes a decrease in the overall score, which 
means a negative action in the network lexicon. Conversely, adding new connec-
tions leads to an increase in the indicator, which means positive interaction with 
the platform. 

These contrasting actions, both negative and positive, are the essence of the formal 
scheme discussed in this article. By diving deeper into the dynamics of friend lists 
and related metrics, we gain invaluable insight into the fundamental principles 
governing social interactions in digital spheres. 
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In practice, research into social network structures may be conducted incognito, 
since the identities of the participants and their specific interactions are often  
irrelevant. Instead of tagging users by name, a simple numbering system is enough 
to allow chains of actions–both positive and negative–to be built within the net-
work. This approach contributes to a deeper understanding of the complex dynam-
ics of internal relations, allowing researchers to explore different mutual reflec-
tions and combinations of interactions when analyzing network structure. 

II. This excerpt elaborates on enhancing the efficiency of cellular networks through 
spatial signal processing and adaptive antennas. It underscores the intricate inter-
play among antenna arrays, processing algorithms, and resource allocation for 
maximizing data throughput. By focusing on specific parametric classes of  
antenna systems, optimization becomes more feasible, allowing for the estimation 
of benefits from adaptive antennas. The example replicates Shorin et al.'s 2016 
study for antennas distribution. The study also introduces a novel algorithm facili-
tating Monotonic Systems efficient grouping of antennas based on angular diver-
sity, ensuring optimal resource utilization. 

The introduction of spatial signal processing technology and adaptive antennas 
makes it possible to significantly (manifold) increase the throughput of the radio 
channel due to the active use of the resource associated with the capabilities of 
spatial signal selection. 

In the context of cellular networks, optimizing adaptive spatial processing entails a 
shift from traditional approaches to achieving maximum throughput for a radio 
channel connecting numerous spatially dispersed subscribers with a serving base 
station. This shift emphasizes the interdependence of the antenna array, spatial 
processing algorithm, radio channel resource distribution algorithm, and data  
exchange algorithms, forming a unified hardware and software module dedicated 
to solving the transmission problem. While the optimal design of antenna arrays 
and algorithms remains a question, practical simplifications can be made by con-
straining antenna systems to specific parametric classes, such as ring homogene-
ous structures with adjustable placement radii and radiation pattern widths.  

The following approach facilitates optimization and allows estimation of the bene-
fits derived from using adaptive antennas, often through simulation. Furthermore, 
the proposed algorithm in this article introduces a "mode with reverse extraction of 
elements from groups," enabling the creation of minimal clusters with desired an-
gular diversity levels. Additionally, this mode facilitates the distribution of sub-
scribers in favorable locations across multiple groups, maximizing the utilization 
of available radio channel resources.  
In the particular scenario of the “Monotone System” being addressed, the algo-
rithm outlined in this article offers a precise solution. This algorithm introduces a 
"mode with reverse extraction of elements from groups," which serves a dual pur-
pose. Firstly, it enables the creation of the fewest possible groups or clusters while 
maintaining a specified level of angular diversity. Secondly, it facilitates the  
simultaneous allocation of individual subscribers situated in more favorable loca-
tions across multiple groups. This approach ensures optimal utilization of the 
available resources within the radio channel, maximizing efficiency and perform-
ance. 

III. Let's consider a scenario where there exists a network of transportation exchanges 
or nodes, denoted as landscape W, interconnected by two-sided roads. In the  
absence of direct transportation between these nodes within this road system, tran-
sit transportation can be organized. Over a long period of observation, if such a 
pattern of operation persists regardless of the presence of direct transport links, it 
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is possible to assess the efficiency of transportation by measuring the average fre-
quency of traffic jams when establishing transportation between these nodes 
within a standard unit of time. Essentially, to characterize the reliability of estab-
lishing transportation between each node in a system W, one can use the average 
number of traffic congestions experienced by connecting to at least one destination 
node in the system over a given period of time. It is obvious that these quantitative 
indicators, namely the feasibility of transportation over a given period of time and 
the characteristics of the guarantees provided, are applicable only within each sub-
system of the road network W.  

The proposed model exhibits several inherent characteristics. Any interruption in 
the flow of transportation along a two-sided route amplifies the average number of 
traffic congestions among all other transportation points, while the introduction of 
a new route conversely diminishes this average. This dynamics correlates with an 
increase or decrease in the load on facilitating transit transportation within the 
transport communications network. 

Similarly, when activity is scaled back at any transportation point within a given 
subsystem, the unreliability of all points within that subsystem escalates. Con-
versely, the addition of a new transportation point to the subsystem reduces this 
unreliability. These observations mirror the behavior of monotonic systems dis-
cussed earlier, affirming that the model governing transportation roads adheres to 
the principles of a monotonic system. 

IV. In the exploration of academic research, various scientific disciplines utilize 
graphs of cited publications, as outlined by Налимов and Мульченко in 1969. 
These graphs are directed and a-cyclic, reflecting the nature of scholarly citations 
where authors can only cite papers that have already been published. It is reason-
able to conceptualize the set of publications, denoted as W, as a system where  
information exchange occurs through citations. 

Within this framework, considering a subset of publications from the entire set W 
allows us to characterize each publication based on the number of bibliographical 
references within that subset. When a publication is removed from the subset, this 
quantitative measure of information exchange within the subset diminishes. Con-
versely, adding a publication to the subset enhances this evaluation for all publica-
tions within the subset. Hence, the citation system represented by these graphs  
exhibits monotonic behavior. In a related context, Trybulets (1970) highlights an 
intriguing example where a directed graph inadvertently illustrates the concept of 
a monotonic system 

V. In the n -dimensional vector space let there be given N vectors. For each pair of 
vectors x  and y  one can define in many ways a distance )y,x(  between these 
vectors (i.e., to scale the space). Let us assume that the set of given vectors forms 
an unknown system W. For every vector in an arbitrary subsystem of W we calcu-
late the sum of distances to all vectors situated inside the selected subsystem. 
Thus, with the respect to each subsystem of W and each vector situated inside that 
subsystem, a characteristic sum of distances is defined, which can be different for 
different subsystems. It is not difficult to establish the following property of the set 
of sums of distances. Because of removing a vector from the subsystem the sums 
computed for the remaining vectors decrease while because of adding a vector to 
the subsystem they increase. A similar property of sums for every subsystem of 
system W is called in this paper the monotonicity property and a system W having 
such a property is called a monotonic system. 
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3. DESCRIPTION OF A MONOTONIC SYSTEM 

One considers some system W  consisting of a finite number of elements, 3 i.e., 

NW  , where each element   of the system W  plays a well-defined role. 

It is supposed that the states of elements   of W  are described by definite 
numerical quantities characterizing the “significance” level of elements   for 
the operation of the system as a whole and that from each element of the system 
one can construct some discrete actions. 

We reflect the intrinsic dependence of system elements on the significance 
levels of individual elements. The intrinsic dependence of elements can be 
regarded in a natural way as the change, introducible in the significance levels 
of elements  , rendered by a discrete action produced upon element  . 

We assume that the significance level of the same element varies as a result 
of this action. If the elements in a system are not related with each other in any 
way, then it is natural to suppose that the change introduced by element   on 
significance   (or the influence of   on  ) equals zero. 

We isolate a class of systems, for which global variations in the significance 
levels introduced by discrete actions on the system elements bears a monotonic 
character. 

Definition. By a monotonic system, we understand a system, for which an 
action realized on an arbitrary element   involves either only decrease or only 
increase in the significance levels of all other elements. 

In accordance with this definition of a monotonic system two types of  

actions are distinguished: type ⊕ and type ⊖. An action of type ⊕ involves 

increase in the significance levels while ⊖ involves decrease. 

The formal concept of a discrete action on an element   of the system W  

and the change in significance levels of elements arising in connection with it 

allows us to define on the set of remaining elements of W  an uncountable set 

of functions whenever we have at least one real significance function 

DW:   ( D  being the set of real numbers). 

Indeed, if an action is rendered on element  , the starting from the pro-

posed scheme one can say that function   is mapped into 

  or 

  according 

as a the action ⊕ or ⊖. Significance of system elements is redistributed as  
action on element   changes from function   to 

     or, otherwise, the 

initial collection of significance levels  W  )(   changes into a new 

                                                           
3  If W  is a finite set, then W  denotes the number of its elements. 
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collection  W  )( 

 . 4 Clearly, if we are given some sequence 

,...,, 321   of elements of W  (arbitrary repetitions and combinations of 

elements being permitted) and the binary sequence ,...,,  , then by the usual 

means one can define the functional product of functions 
 1

, 
 2

, 
 3

 in the 

form 






 

321

. 

The construction presented allows us to write the property of monotonic 
systems in the form of the following basic inequalities: 

 )()()(  





  (1) 

for every pair of elements W,  , including the pairs ,  or , . 

Let there be given a partition of set W  into two subsets, i.e., WHH   

and HH . If we subject the elements H,...,, 321   to positive 

actions only, then by the same token on set W  there is defined some function 

...
321











  , which can be regarded as defined only on the subset H  of W . 5 

If from all possible sequences of elements of set H  we select a sequence 

H21 ,...,,  , 6 where i  are not repeated, then on the set H  the function 

...
21







   is induced ambivalently. 

We denote this function H  and call it a standard function. We shall also 
refer to the function thus introduced as a credential function and to its value on 
an element as an   credential. In accordance with this terminology the set 

 H  )(H  , which is denoted by H  is called a credential collection 

given on the set H  or a credential collection relative to set H . Let us assume 

that we are given a set of credential collections  WH  H   on the set of 

all possible subsystems )W(P  of system W . The number of all possible sub-

systems is W2)W(P  . 

Instead of considering a standard function for positive actions ...
21







   one 

can consider a similar function for negative actions H . Thus, one defines 

single credential collection  H  )(H H    and the aggregate of 

credential collections  WH  H   by an exact analogy. 

                                                           
4  Functions  , 

  and 

  are defined on the whole set W  and, consequently, 

)(

  and )(

  are defined. 
5  We are not interested in significance levels obtained as a result of operations on 

elements of H  onto the same set H . 
6  Here symbols ,  are used to stress the ordered character of a sequence of H . 
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Let us briefly summarize the above construction. Starting with some real 
function   defined on a finite set W  and using the notion of positive and 

negative actions on elements of system W , one can construct two types of 

aggregate collections H  and H  defined on each of the H of subsets of 
W . Each function from the aggregate (credential collection) is constructed by 
means of the complement to H , equaling HW\ , and a sequence 

H21 ,...,,   of distinct elements of the set H . For this actions of types ⊕ 

and ⊖ are applied to all elements of set H  in correspondence with the ordered 

sequence 
H21 ,...,,   in order to obtain H  and H  respectively. 

Credential collections/arrays concept of H  and H  needs refinement. 
The definition given above does not taken into account the character of  
dependence of function H  on the sequence of actions realized on the ele-

ments of set H .7 Generally speaking, credential collection )H(H    is not 

defined uniquely, since it can happen that for different orderings of set H  we 
obtain different function H . 

In order that credential collection H  )H(   be uniquely defined by 

subset H  of the set W  it is necessary to introduce the notion of commutability 
of actions. 

Definition. An action of type ⊕ or ⊖ is called commutative for system W  
if for every pair of elements W,   we have 

 













  , 













   

In this case it is easy to show that the values of function H  on the set H  

do not depend on any order defined for the elements of the set H  by sequence 

,..., 21  . The proof can be conducted by induction and is omitted. 

Thus, for commutative actions the function H  )H(   is uniquely deter-

mined by a subset of W . 

In concluding this section, we make one important remark of an intuitive 

character. As is obvious from the above-mentioned definition of aggregates of 

credentials collection of type ⊕ and ⊖, the initial credential collection serves as 

the basic constructive element in their construction. The initial credential col-

lection is a significance function defined on the set of system elements before 

                                                           
7  In the sequel, if sign “” or “” is omitted from our notation, then it is under‐

stood to be either “” or “” 
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the actions are derived from the elements. In other words, it is the initial state of 
the system fixed by credential collection W  . It is natural to consider only 

those aggregates of credential collections that are constructed from an initial ⊕ 

collection, which is the same as the initial ⊖ collection. The dependence indi-

cated between ⊕ and ⊖ credential collections is used considerably for the proof 

of the duality theorem in the second part of this paper. 

4. EXTREMAL THEOREMS. STRUCTURE OF EXTREMAL SETS  

Let us consider the question of selecting a subset from system W  whose ele-
ments have significance levels that are stipulated only by the internal 
“organization” of the subsystem and are numerically large or, conversely, 
numerically small. Since this problem consists of selecting from the whole set 
of subsystems )W(P  a subsystem having desired properties, therefore it is 

necessary to define more precisely how to prefer one subsystem over another, 
see also Muchnik and Shvartser (1990). 

Let there be given aggregates of credential collections  WH  H   

and  WH  H  . On each subset there are defined the following two 

functions: 

 
H

max)H(F
  )(H  , 

H
min)H(F

  )(H  . 

Definition of Kernels. By kernels of set W  we call the points of global 

minimum of function F  and of global maximum of function F . 

A subsystem, on which F  reaches a global minimum is called a ⊕ kernel 

of the system W , while a subsystem on which F  reaches a global maximum, 

is called ⊖ kernel. Thus, in every monotonic system the problem of determin-

ing ⊕ and ⊖ kernels is raised. 

With the purpose of intuitive interpretation as well as with the purpose of 

explaining the usefulness of the notion of kernels introduced above we turn 

once again to the examples of citation graphs and telephone commutation net-

works. 

The definition of the kernel can be formulated using the levels of signifi-

cance of the elements of the system, that is: the ⊕ kernel is a subsystem of a 
monotonic system, for which the maximum level among the levels of signifi-
cance is determined only by the internal organization of the system is the 

minimum, and the ⊖ kernel is the subsystem for which the minimum level 
among the same significance levels is the maximum. 
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The definition of a kernel accords with the intuitive interpretation of a ker-
nel in citation graphs and telephone commutation networks. Thus, in citation 

graphs a ⊕ kernel is a subset (subsystem) of publications, in which the longest 
list of bibliographical titles is at the same time very short; though not inside the 
subset, but among all possible subsets of the selected set of publications 
(among the very long lists). If in our subset of publications a very short list of 
bibliographical titles is at the same time very long among the very short ones 

relative to all the subsets, then it is a ⊖ kernel of the citation graph. It is clear 

that a ⊖ kernel publications cite one another often enough, since for each pub-
lication the list of bibliographical titles is at any rate not less than a very short 

one while a very short list is nevertheless long enough. In a ⊕ kernel the same 
reason explains why in this subset one must find representatives of various 
scientific schools. 

In telephone commutation networks, one can consider two types of system 
elements – lines of connections and points of connections. In a system consist-

ing of lines, a ⊖ kernel turns out to be a subset of lines, for which the lines with 
the least number of traffic congestions in that subset are at the same time the 
lines with the greatest number of traffic congestions among all possible sets of 
lines. This means that at least the number of traffic congestions stipulates only 

by the internal organization of a sub-network of lines of a ⊖ kernel is not less 
than the number of traffic congestions for lines with the smallest number of 
traffic congestions and, besides, this number is large enough. Hence one can 

expect that the number of traffic congestions for lines of a ⊖ kernel is suffi-
ciently large. Similarly one should expect a small number of traffic congestions 

for lines of a ⊕ kernel. Formulation for ⊕ and ⊖ kernels for points of connec-
tion is exactly the same as for the lines and is omitted here. 

Before stating the theorems, we need to introduce some new definitions and 

notations. Let 1k10 ,...,,   be an ordered sequence of distinct elements 

of set W , which exhausts the whole of this set, i.e., Wk  . From sequence 

  we construct an ordered sequence of subsets of W  in the form 

1k10 H,...,H,H    with the help of the following recurrent rule WH0  , 

 
ii1i HH  \ ; 2k,...,1,0i   9 

Definition. Sequence   of elements of W  is called a defining sequence 

relative to the aggregate of credentials collections  WH  H   if there 

exists in sequence   , a subsequence of sets 

  p10 ,...,, , such that: 

                                                           
9  Sign \  denotes the subtraction operation for sets. 
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a) credential )(H ii   of an arbitrary element i  in sequence  ,  

belonging to set j  but not belonging to set 

 1j  is strictly less than 

values of )(F 1j  ; 10 

b) in set p  there does not exist a proper subset L , which satisfies the 

strict inequality )L(F)(F p   . 

A sequence   with properties a) and b) is denoted by  . One similarly 

defines a sequence  . 

c) arbitrary element i  in sequence  , belonging to set j  but not be-

longing to set 

 1j  is strictly greater than values of )(F 1j  ; 

d) in set q  there does not exist a proper subset L , which satisfies the 

strict inequality )L(F)(F q   . 

Definition. Subset *H  of set W  is called definable if there exists a defin-

ing sequence   such that 

  q

*H . 

Definition. Subset *H  of set W  is called definable if there exists a defin-

ing sequence   such that 

  p

*H . 

Below we formulate, but do not prove, a theorem concerning properties of 
points of global maximum of function F . The proof is adduced in Appendix 1. 

A similar theorem holds for function F . In Appendix 1 the parallel proof for 

function F  is not reproduced. The corresponding passage from the proof for 

F  to that of F  can be effected by simple interchange of verbal relations 

“greater than” and “less than”, inequality signs “” and “”, “”, “” as well as 
by interchange of signs “” and “”. The passage from definable set *H  to *H  

and from definition of sequence   and  , is affected by what has just been 

said. 

Theorem 1. On a definable set *H  function F  reaches a global maximum. 

There is a unique definable set *H . All sets, on which a global maximum is 

reached, lie inside the definable set *H . 

                                                           
10  Here and everywhere, for simplification of expression, where it is required, 

the sign “” or “” is not used twice in notations. We should have written 

)(F 1j



   or  )(F 1j



  . 
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Theorem 2. On a definable set *H  function F  reaches a global minimum. 

There is a unique definable set *H . All sets, on which a global minimum is 

reached, lie inside the definable set *H . 

In the proof of Theorem 1 (Appendix 1) it is supposed that definable set *H  

exists. It is natural that this assumption, in turn, needs proof. The existence of 
*H  is secured by a special constructive procedure. 11 

The proof of Theorem 2 is completely analogous to the proof of Theorem 1 

and is not adduced in Appendix 1. We present a theorem, which reflects a more 
refined structure of kernels of W  as elements of the set )W(P  of all possible 

subsets (subsystems) of set W . 

Theorem 3. The system of all sets in )W(P , on which function F   F  

reaches maximum (minimum), is closed with the respect to the binary operation 

of taking union of sets. 

The proof of this theorem is given in Appendix 2 and only for the function 

F . The assertion of the theorem for F  is established similarly. 

Thus, it is established that the set of all ⊕ kernels (⊖ kernels) forms a 

closed system of sets with respect to the binary operation of taking the unions. 

The union of all kernels is itself a large kernel and, by the statements of Theo-

rems 1 and 2, is a definable set. 

5. ROUTINE OF FINDING THE KERNELS 

In preceding sections, we established the fundamental approach for selecting 

singular subsystems within monotonic systems, specifically identifying kernels 

with extremal properties. At the core of this method lies the notion of a 'defin-

able set,' as delineated by Mullat in 1971. In our framework, a definable set 

represents the largest kernel within a monotonic system of interconnected ele-

ments. Back in 1971, we introduced the concept of a definable set through the 
utilization of defining   and   sequences within the system.  

Subsequently, we tackled the issue of identifying defining sequences, offer-

ing constructive solutions in the form of algorithms. The key attributes of these 

defining sequences, generated according to predefined routines, and encom-

passing the entirety of system elements W, are delineated by a theorem. 

                                                           
11  This procedure will be presented in the second part of the article, since here only the 

extremal properties of kernels and the structure of the set of kernels are established. 
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We will delve into the intricate relationship between two defining  
sequences, denoted as   and  . While one might intuitively consider  

obtaining   by simply reversing the order of  , this assumption doesn't 

universally hold true. However, we can make a more nuanced assertion based 

on the discrete operations ⊕ and ⊖ on the elements of system W, as defined by 

Mullat in 1976. This assertion manifests as a duality theorem, which we shall 

expound upon shortly. 

Under the auspices of this duality theorem, the algorithms elucidated for 

constructing defining sequences serve to significantly narrow the scope of 

search for both ⊕ and ⊖ kernels within system W. The algorithm delineating 

this restriction of the search domain is presented in the form of a constructive 

routine. 

Now, let's dissect the routine for constructing an ordered sequence α com-

prising all elements of W, succinctly known as the Kernel Searching Routine 

(KSR). This routine plays a pivotal role in our methodology, facilitating the 

systematic identification and organization of system elements for further analy-

sis and manipulation. 

This routine consists of rules of generation and scanning of an ordered  

series of ordered sets j  (sequences); here j  varies from zero to a value p , 

which is automatically determined by the rules of the routine, whereas the  

elements of each sequence j  are selected from the set W 12. 

This series j  constructed by this rule forms a numerical sequence of 

thresholds ju  and a sequence of sets j . On the other hand the sequence of 

thresholds governs the transactions from 1j  to j  in the chain j , and the 

sequence j  terminates with a set, which is definable. 

In the description of a rule we use the operation of extending a sequence j  

by adjoining to it another sequence  . This operation is symbolically  

expressed by  , . This rule of construction of the sequence   of all 

elements of the set W  can be described stages: by step Z and R. 

                                                           
12  Let us recall that in a) the brackets ,  denoted an ordered set; in the case under 

consideration they denote an ordered set of ordered sets j . 
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Z. In the set W  we have found an element 0  for which 

)W(F)(Wmin)(W W0 



  ; we are constructing a defining  

sequence  . The construction of   is entirely similar and therefore not 

presented here. We shall only indicate where it is necessary to invert the 

sign of inequalities, and where the search for an element with the minimal 

credential must be replaced by search for an element with maximal creden-

tial, so as to be able to construct  . Thus the construction of  , the 

element 0  is obtained from )W(F)(Wmax)(W W0 





   condi-

tion. We shall write )(Wu 00   , 0  and the set W0 . We 

select a subset of elements   from W  such that 0u)(W  \ . The 

construction of   requires the selection of such   that 

0u)(W  \ , )(Wu 00   . After that we order the elements in a 

certain manner (which can be arbitrary selected). The thus-obtained ordered 

set is denoted by  . Let us write 0 . 

R. We construct a recursive routine for extending the sequences   and 0 . 

Here we denote by )i(0  the i -th element of the sequence 0 . We specify 

one after another the elements of the sequence 0 . At each instant of speci-

fication we extend the sequence   by the elements from 0  of the  

sequence fixed at this instant. In accordance with the symbolic notation of 

the operation of extension of a sequence  , we perform at each instant t  

of specification the operation )t(, 0 . Suppose that all the  

elements of 0  up to )1i(0   inclusive have been fixed. Then the  

sequence   will have the form )1i(),...,2(),1(, 0000  , which corre-

sponds to the symbolic notation of the operation of extension of the se-

quences )1i(),...,2(),1(, 000   in the case that   inside the 

brackets consists of one element 0 . Let us consider an element )1i(0   

of the sequence 0 . At the instant of specification of the element )1i(0   

we decide during the above-mentioned operation of extension of   also 

about any further extension or about stopping the extension of the sequence 

0 . We must check the following three conditions: 

a) In the set \W  there exist elements such that 0u)(W  \  In 

constructing  , this condition is replaced by 0u)(W  \ ; 
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b) the element )i(0  is defined for the sequence 0 . By assumption an 

element )i(0  to be defined for a sequence 0  if the sequence 0  has 

an element with an ordinal number i . Otherwise the element )i(0  is 

not defined. There can be four cases of fulfillment or no fulfillment of 

these conditions. In two cases, when the first condition is satisfied, irre-

spective of whether or not the second condition holds, the sequence 0  

will be extended. This means that the set of elements   in \W  

specified by the first condition is ordered in the form of sequence  . 

The sequence 0  is extended in accordance with the formula 

 ,00 . In case when the first condition is not satisfied, whereas 

the second condition is satisfied, we shall fix the element )i(0  and at 

the same time extend the sequence  , i.e., )i(, 0 , and pro-

ceed to new recursion stage. In case neither the first nor the second con-

dition holds, the sequence 0  will not be extended nor the last fixed ele-

ment in the sequence 0  will be the element )1i(0  . Suppose that we 

have fixed all the elements of the sequence j . By that time we have 

constructed a sequence  . Let us consider the set \W  and the cre-

dential system  \W . We shall find an element in  \W  on 

which the minimum is reached in the credential system  \W . The 

obtained element is denoted by 1 j . We obtain   the element  1 j  

from  the  )W(F)(Wmax)(W W1 j  





 \\\ \   condi‐

tion:. Thus, )W(F)(W 1 j  

 \\ . Let us write 

)(Wu 1 j1 j 



  \ , and for the set  \W1 j ; then we supple-

ment the sequence   by the element 1 j , i.e., 1 j,  . In the 

same way as during the zero step, we select a subset of elements   from 

\W  such that 1  ju)(W 
  \ . Here we select for   a set 

of elements   such that 1 ju)(W 

  \ . The selected set can be  

ordered in any manner. The ordered set is denoted by  . The set 1 j  is 

assumed to be equal to  . 

c) By analogy with previous b) the recursion step will be described as a re-

cursion routine. At this stage we also use the rule of extension of the se-

quences   and 1 j . Suppose that we have fixed all elements of 1 j  up 
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to )1i(j   inclusive. Then the sequence   will have the form 

)1i(),...,1(,, jj1 j   , where   denotes the sequence    

obtained at the instant of fixing all the elements of j , or, to rephrase, 

the sequence   prior to the )1j(  -th step. The last equation corre-

sponds to the symbolic operation of extension of the sequence 

)1i(),...,1(,, jj1 j    in the case that   inside the brackets 

denotes the sequence 1 j,  . Let us consider an element )1i(1 j    

of the sequence 1 j . At the instant of fixing the element )1i(1 j    we 

decide about a further extension or about stopping the extension of the 

sequence 1 j . For this purpose we consider the credential system 

 \W  and we check two conditions: 

1) The set \W  contains elements   such that 

1 ju)(W 

  \  For constructing   we must take elements  

  such that 1 ju)(W 

  \ ; 

2) the element )i(1 j  is defined for the sequence 1j . 

 By analogy with the step Z, we find that the sequence 1j  is extended in 

two cases in which the first condition is satisfied irrespective of whether 

or not the second condition holds. The set of elements   in \W  

specified by the first condition is ordered in the form of a sequence . 

The sequence 1 j  is extended in accordance with the formula 

  ,1 j1 j . In the case that the first condition does not hold, 

whereas the second condition is satisfied, the element )i(1 j  will be 

fixed and at the same time we extend the sequence  , i.e., 

)i(, 1 j , and after that we proceed again in accordance with 

the rules of Stage 2 of the recursion routine of extension of the sequence 

1 j . In the case that neither the first, nor the second condition holds, the 

sequence 1 j  will not be extended, and the last fixed element of the  

sequence 1 j  will be the element )1i(1 j   . At some step p  the  

sequence   will exhaust the entire set of elements W . 
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Theorem 4. A sequence   constructed on the basis of a collection of  

credential system  WH  H   is a defining sequence  , whereas a  

sequence   constructed on the basis of  WH  H   is a defining  

sequence  . 

The first part of the theorem (for  ) is proved in Appendix 3. The second 

part (for  ) can be proved in the same way. 

NB1. Let us note that a sequence   constructed by KSR rules has somewhat 

stronger properties than required in obtaining a defining sequence. More  
precisely, there does not exist a proper subset L  for 1p,...,1,0j   such that 

1 jj L   and )L(F)(F j   . This is not required for obtaining a defin-

ing sequence   (  ). The corresponding proof is not given here.  

NB2. Let us note another circumstance. With the aid of the kernel-searching 
routine it is possible to effectively find (without scanning) the largest kernel, 
i.e., a definable set. It is not possible to find an individual kernel strictly in-
cluded in a definable set (if the latter exists) by constructing a defining se-
quence. 

6. DUALITY THEOREM 

Let us establish a relationship between the defining sequences   and   of a 

system W . 

Theorem 5. Let   and   be defining sequences of the set W  with  

respect to the collection of credential system  WH  H  , 

 WH  H   respectively. Let j  be the subsequence of the sequence 


   )p,...,1,0j(   needed in the determination of  , and let j  be the 

corresponding subsequence of the sequence 


   )q,...,1,0j(  .  

Hence if for an m  and a n  we have 

 )(F)(F mn







  , (2) 

 then 



  1nm W\ , 



  1mn W\ . If 

 )(F)(F mn







   2, (3) 

 then   nm W\ ,   mn W\ . 

                                                           
2  In the following, the  and  sign will not be used twice in notation. This rule 

applies also to Appendices 1 and 2 
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This theorem is important from two points of view. Firstly, under the condi-
tions (2) and (3) there exists a relationship between an   sequence and  . 

This relationship consists in the fact that elements of   which are at the  

“beginning” and form either the set 

 1 nW\  or the set nW\  will include all 

the elements of the set m  that are at the “end” of  . The same applies also to 

sets 

 1 mW\  or mW\  which are at the beginning of  , since they include 

in a similar way the set n . In other words, the theorem states that the  

sequence   does not differ “very much” (under certain conditions) from the 

sequence, which is the inverse to  . 

Let us note that the conditions (2) and (3) are sufficient conditions, and it 

can happen that actual monotonic systems satisfying these conditions do not 

exist. Nevertheless, in the third part of this article, we shall describe actual 

examples of such systems. 

7. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM 

We just noted that a defining sequence   differs “slightly” from the inverse 

sequence of  . For elucidating the possibility of a search for kernels on the 

basis of the duality theorem, let us rephrase the latter. This assertion can be 
formulated as follows: at the beginning of the sequence   we often encounter 

elements of the sequence  , which are at the end of the latter. 

Such an interpretation of the duality theorem yields an efficient routine of 

dual search for ⊕ and ⊖ kernels of the system W . This is due to the fact if the 

elements are often encountered, there exists a higher possibility of finding a ⊕ 
kernel at the beginning of the sequence   as compared to finding it at the end 

of  ; the same applies also to a ⊖ kernel in the sequence  . 

The routine under construction is based on Corollaries I-IV of the duality 

theorem presented in Appendix II, where we also prove this theorem. 

The routine of dual search for kernels described below is an application of 
two constructive routines, i.e., a KSR for constructing   and a KSR for con-

structing  . The routine is stepwise, with two constructing stages realized at 

each step, i.e., a stage in which the KSR is used for constructing   with ⊕ 

operations, and a stage in which the same routine is used for constructing   

with the aid of ⊖ operations on the elements of the system. 
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Z. At first we store two numbers: )W(Fu0 

   and 0u0 
 . After that we 

perform precisely Stage 1 and 2 of the zero step of the KSR used for con-
structing the defining sequence  . This signifies that the set W  contains 

an element 0  such that )W(F)(Wmax)(W W0 





  . The 

threshold 

0u  is equal to )(W 0 , etc. By using the constructions of the 

zero step of KSR at the previous stage of the dual routine under construc-
tion, we obtained a set W1  . Then we examine the set 1W\  and the 

credential system   1W\ . On the set   with the credential system 


  j1 j  we perform a complete kernel-searching routine for the purpose 

of constructing a defining sequence of ⊕ operations only for the set 


 1 jW \ . As a result, we obtain in the set 1W\  a subset F  on which the 

function F  reaches a global maximum among all the subsets of the set 
1W\ . 

R. By applying the previous )1j(   steps to the j -th step, we obtained a se-

quence of sets   j10 ,...,, , and according to the construction of a defining 

sequence we have   j10 ...  and W0  . At first we store two 

numbers: )(Fu jj





   and )H(Fu j

j 

  . By analogy, we perform the 

same construction consisting of two stages of a KSR recursion step for con-
structing   with the aid of ⊕ operations. At a given instant of such dual 

construction we obtained a set 

  j1 j . Then we consider the set 


 1 jW\  and the credential system 



  1 jW\ . In the same way as at the 

zero step, we perform on the set 

 1jW\  a complete kernel-searching rou-

tine with the purpose of constructing a sequence   only on the set 


 1 jW\ . As a result we obtain in the set 

 1 jW\  a subset 1 jH   on which 

the function F  reaches a global maximum among all subsets of the set 


 1 jW\ .  

S. Before starting the construction of the j -th step of the routine under con-

struction, we check the condition of a Rule of Termination of Construction 

Routine: 
   jj uu . (4) 

If (4) is satisfied as a strict inequality, the construction will terminate before the 

j -th step. If (4) is an equality, the construction will terminate after the j -th 

step. 
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8. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE 

At the end of the construction process, the above routine yields a set jH  or a 
set 1 jH  . It can be asserted that one of the sets is definable set or the largest 
kernel of the system W  with respect to a collection of credential system 

 WH  H  . 

The assertion is based on the following. Firstly, by applying the KSR we 
obtained the second stage of the j -th step of a dual routine the maximal set 

1jH   among all the subsets of the set 

 1 jW\  on which the function F  

reaches a global maximum in the system of sets of all the subsets of the set 


 1 jW\ . Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality 

theorem), it follows that, prior to the j -th step and provided that (4) is a strict 

inequality, the largest kernel (a definable set) will be contained in the set 
jW\ , or it follows from the Corollary 2 of the Theorem 2, if (4) is a equal-

ity, that the largest kernel is included in the set 

 1 jW\ . Thus by comparing 

these two remarks we can see that either 
jH  or 

1 jH 
 is a definable set. 

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find 

by similar dual routine also the largest kernel K ⊕- definable set. This asser-

tion can be proved in the same way as the assertion about 
jH  and 

1 jH 
; there-

fore this proof is not given here. 

APPENDIX 1 

Proof of Theorem 1. We suppose that a definable set *H  exists. 

(Conducting the proof by contradiction) let us assume that there exists a set 
WL  , which satisfies the inequality 

 ).L(F)H(F *

   (A1.1) 

Thus two sets *H  and L  are considered. One of the following statements 

holds: 

1) Either 

*H/L , which signifies the existence of elements in L , not 

belonging to *H ; 

2) or *HL  . 

We first consider 2). By a property of definable set *H  there exists a defin-

ing sequence   of elements of set W  with the property b) (cf. the definition 

of  ) such that the strict inequality )L(F)H(F *

   does not hold and, con-

sequently, only the equality holds in (A1.1). In this case, the first and the third 
statements of the theorem are proved. It remains only to prove the uniqueness 
of *H , whish is done after considering 1). 
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Thus, let 

*H/L  and let us consider set tH   the smallest of those iH  

)1k,...,1,0i(   from the defining sequence   that include the set *H/L  . 

Then the fact that tH  is the smallest of the indicated sets implies the following: 

there exists element L , such that tH , but 1tH  . 

Below, we denote by )(i   the smallest of the indices of elements of defin-

ing sequence   that belong to the set W . 

Let p  be the last in the sequence of sets j , whose existence is guaran-

teed by the sequence  . For indices t  and )(i p

  we have the inequality 

)(it p

 . 

The last inequality means that in sequence of sets j  there exists at least 

one set s , which satisfies 

 1t)(i 1s 

 . (A1.2) 

Without decreasing generality, one can assume that s  is the largest among 

such sets. 

It has been established above that tH , but 1tH  . Inequality (A1.2) 

shows that 1ts H 

  , since the opposite assumption 1ts H 

   leads to the 

conclusion that 1t)(i s   and, consequently s  is not the largest of the 

sets, for which (A1.2) holds. 

Thus, it is established that t1s H

 . Indeed, if t1s H

 , then for indices 

)(i 1s



  and t  we have t)(i 1s 

 . 

Hence 1t1)(i 1s 

  and the inequality 1)(i)(i 1ss  



  implies 

1t)(i s  . The last inequality once again contradicts the choice of set 
s  

as the largest set, which satisfies inequality (A1.2). 

Thus,  s  but 

 1s  since tH , 

 1stH . On the basis of prop-

erty a) of the defining sequence  , we can conclude that 

 )(F)(H st  

 , (A1.3) 

where ps0  . 
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Let us consider an arbitrary set j  )1p,...,1,0j(   and an element 
 j , which has the smallest index in the sequence  . In other words, set 

j  starts from the element   in sequence  . In this case, set j  is a certain 

set iH  in the sequence of imbedded sets iH . The definition of )H(F  and 

the property a) of defining sequence   implies that  

 )(F)()(F 1jjj 



  . 

Hence, since 
*

p H
   and )(F...)(F)(F p10    and as a corollary 

we have for p,...,1,0j   

 )H(F)(F)(F *

pj   , (A1.4) 

Let L  and let credential )(L   be minimal in the collection of cre-

dentials relative to set L . On the basis of inequalities (A1.1), (A1.3), and 
(A1.4) we deduce that 

 ).L(F)(L)(Ht 

   (A1.5) 

Above, tH  was chosen so that tHL  . Recalling the fundamental 

monotonicity property (1) for collection of credentials (the influence of ele-
ments on each other), it easy to establish that 

 )(H)(L t   . (A1.6) 

Inequalities (A.5) and (A.6) imply the inequality 

 )(L)(L   , 

i.e., there exists in the collection of credentials relative to set L  a credential, 
which is strictly less than the minimal credential. 

A contradiction is obtained and it is proved that set L  can only be a subset 
of *H  and that all sets, distinct from *H , on which the global maximum is also 

reached, lie inside *H . 

It remains to prove that if a definable set 
*H  exists, then it is unique. In-

deed, in consequence of what has been proved above we can only suppose that 

some definable set 
'H , distinct from 

*H , is included in 
*H . 

It is now enough to adduce arguments for definable set 'H  similar to those 

adduced above for L , considering it as definable set 'H ; this implies that 
'* HH   . The theorem is proved.  
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APPENDIX 2 

Proof of Theorem 3. Let   be the system of set in )W(P , on which func-

tion F  reaches a global maximum, and let 1K  and 2K . 

Since on 1K  and 2K  the function F  reaches a global maximum, therefore 

we might establish the inequalities 

 )K(F)KK(F 121   , (A2.1) 

 )K(F)KK(F 221   . (A2.2) 

We consider element 21 KK  , on which the value of function F  on 

set 21 KK  , is reached, i.e., 

 )(KKmin)(KK 21KK21
21

 



 . 

If 1K , then by rendering ⊖ actions on all those elements of set 

21 KK  , that do not belong to 1K , we deduce from the fundamental 

monotonicity property of collections of credentials (1) the validity of the ine-

quality 
 )(KK)(K 211   . 

Since the definition of F  implies that )(K)K(F 11  

  and by the 

choice of element   we have )KK(F)(KK 2121  

 , we therefore 

deduce the inequality 

 )KK(F)K(F 211   . 

Now from the inequality (A2.1) it follows that 

 )KK(F)K(F 211   . 

If, however, it is supposed that 2K , then ⊖ actions are rendered on 

elements of 21 KK  , not belonging to 2K ; in an analogous way implement-

ing (A2.2) we obtain the equality 

 )KK(F)K(F 212   . 

The Theorem 3 has been proved.  
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APPENDIX 3 

Proof of Theorem 1. We shell prove that a sequence   constructed by the 
KSR rules is a defining sequence for a collection of credential systems  

  WH  H  . 

First of all let us recall the definition of a defining sequence of elements of 

the system W . We shall use the notation 1k10 H,...,H,H   , where 

WH0  , ii1 i HH  \  )2k,...,1,0i(  . A sequence of elements of a set 

W  is said to be defining with respect to a coalition of credential system 

 WH  H   if the sequence    has a subsequence of sets 

p10 ,...,,  , such that 

a) The credential )(H ii   of any element i  of the sequence   

that belongs to the set j , but does not belong to the set 1 j , is 

strictly smaller than the credential of an element with minimal cre-

dential with respect to the set 1 j , i.e., )(F)(H 1 jii 
  , 

1p,...,1,0j   3; 

b) the set p  does not have a proper subset L  such that the strict ine-

quality )L(F)(F p    is satisfied (the “” symbol has been omit-

ted; see previous footnote). 

We shall consider a sequence of sets    and take the subsequence   in 

the form of the sets j  )p,...,1,0j(   constructed by the KSR rules. We have 

to prove that sets j  have the required properties of a defining sequence.  

Assuming the contrary carries out the proof.  

Let us assume that Mullat property (1971) of a defining sequence is not sat-

isfied. This means that for any set j  there exists in the sequence of elements 

 ),...,2(),1( jjj   

an element )r(j  such that 

 1 j1 jjrv u)(F))r((H 

   (A3.1) 

                                                           
3  In the definition of   sequence it is required that the following strict inequality be 

satisfied: )(F)(H 1 jii 
  , 1q,...,1,0j   
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Here v  is the index number of the element j  selected in Stage 1 of the 

recursion step of the constructive routine of determination of  ; in the vocabu-

lary of notation used in Mullat (1976) we have )(iv j . 

According to the method of construction, the sequence j  consists of  

sequences   formed at the second stage of the j -th step of the constructive 

routine. Let M  be a set in a sequence of sets    such that the first element 

)M(i  of the set M  in the constructed sequence   is used at the second 

stage of the j -th step for constructing the sequence   to which the element 

)r(j  belongs. This definition of M  shows that MH rv  . 

From the construction of the second stage of the j -th step and the principal 

property of monotonicity of ⊖ operations in the system we obtain the inequali-

ties 

 jjjjjrv u)())r((M))r((H  



  (A3.2) 

By virtue of the above method of selection of the set 1 j  from the se-

quence of sets j  and of the properties of a fixed sequence j , we obtain at 

the j -th step  

 1 j1 j1 j1jjj u)()(u 





  , (A3.3) 

where 1p,...,1,0j  . 

According to the rule of constructing of the sequence  , the function F  

reaches its value on the elements j  and 1 j . The elements j  and 1 j  

belong to the sets j  and 1 j  respectively; therefore the inequalities (A.1) – 

(A3.3) are contradictory. 

Thus our assumption is not true and Mullat Property of the defining  

sequence   constructed by KSR rules has been proved. 

Let as assume that Property b) does not hold, i.e., the last p  of the  

sequence j  contains a proper subset L  such that 

 )L(F)(F p   . (A3.4) 
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Let the element L , and suppose that it is the element with minimal  

ordinal number in   belonging to L ; moreover, let t  denotes this number, 

i.e., )L(it  ,  t . From the definition of t  it follows that tHL  . 

Our analysis carried out above for the set rvH   we repeat below for the set 

tH . By analogy with the definition of the set M  we define a set 'M  with the 

aid of the element   and the sequence  .  

The set 'M  is equated with the set of the sequence of sets    that begins 

with an element used in the formation of a set   at the p -th step of the con-

structive routine such that  . 

By analogy with derivative of (A3.2) we obtain 

 pppt u)()('M)(H   . (A3.5) 

Since )(L)L(F  

 , it follows from (A3.4) and (A3.5) that 

)(L)(Ht   . 

We noted above that tHL  , by virtue of the monotonicity of ⊖ opera-

tions, it hence follows that 

 )(H)(L t   . 

The last two inequalities are contradictory, and hence Property b) of the  

defining sequence is satisfied. 

Thus we have proved that the sequence   constructed by the KSR rules is 

a defining sequence with respect to a collection of credential systems 

 WH  H  , and hence it can be denoted by  , whereas the sequence 

j  obtained by a constructive routine can be denoted by 


 . 

APPENDIX 4 

Proof of Duality Theorem. Below we shall show that 



  1nm W\ , if 

)(F)(F mn







   (we omit a twice notation of  and  symbols; a promised 

above the  and   sign will not be used  twice  in notation. This  rule has been 

applied also to Appendices 1 and 2. 
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Let us assume that there exists an element  m  and that 

 1m , i.e., 




  1nm W\ . Hence follows that we have defined a credential )(1n  

 . 

According to the definition of the function F  the following inequality is true: 

)(F)( 1n1n







  . 

For a defining sequence   and for any 1q,...,1,0j   we have inequali-

ties  
 )(F)(F n1n



  . (A4.1) 

Let us consider an element 
 ng  with the smallest index number in  . 

It follows from the definition of   that 

 )(F)g( 1nn





  . 

The choice of element g  is convenient because it permits the use of Mullat 

Property of a defining sequence (see Appendix 1), i.e., in this case the set 
n  

is in the form of  ntH . Since )g()(F nn
  , we have proved (A4.1). 

Since  m , it follows that we have defined a credential )(m   . We 

have the following chain of inequalities: 

 )()(W)(W)()(F nmm   . 

Let us recall that for any element   of the system W  under consideration, 

we have in a) the relation )(W)(W   . The first inequality follows 

from the definition of the function F , and the second inequality from the 

monotonicity of ⊖ operations. The equality follows from the definition of the 
functions   and  , whereas the last inequality follows from the monotonic-

ity of ⊖ operations. 

By virtue of (A4.1) and of the conditions of the theorem, we have also the 
following chain of inequalities: 

 )(F)(F)(F)( mn1n1n







  . 

By supplementing this chain by the previous chain of inequalities, we hence 
obtain )()( n1n  

 . Since 

  n1n , it follows from the monotonicity 

of ⊕ operations that )()( 1n1n  





 . The logical step used for obtaining 

the last inequality is valid, and therefore the assumption that 



  1nm W\  is 

untrue. 
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In the same way we can prove the inclusion 



  1mn W\ . For this pur-

pose it suffices to change the signs of the inequalities and (whenever necessary) 
to replace the set 

 1n  by 

 1n , and m  by n . 

If condition (3) of the theorem holds, it is not necessary to use (A4.1). In 
this case the proof will be similar, being based on the following chain of ine-
qualities (The  proof  is  based  on  assuming  the  contrary,  so  that 

  nm W\ ,  i.e.,  there  exists,  as  it  were,  an  element   m   and 
 n .): )()(W)()(F)(F)( nmmnn   . 

The first inequality follows from the definition of )(F n
 , the second fol-

lows from Condition (3) of the theorem, and the third from the definition of 
)(F m

 . The last two relations express the properties of monotonic systems. 

Hence in this case we have under Condition (3) also  )()( nn   . This 

completes the proof of the theorem.  Now follows several corollaries of Theo-
rem 2. 

Corollary 1. If for q,0n   the defining sequence is   there exists a sub-

set  nWH \  such that )(F)H(F n



  . Thus kernel K ⊕ will belong to the 

set nW\ . Indeed, since a definable set is also kernel, it follows that 

)(F)H(F p



  , p,...,1,0m  , and hence (in any case) if pm  , and n  is 

selected on the basis of the condition of the corollary, then )(F)(F pn

  . By 

virtue of the theorem, we therefore obtain the assertion of the corollary. 

Corollary 2. If for 1q,...,1,0n   of a defining sequence   there exists 

a subset  nWH \  such that )(F)H(F n



  , then the kernel K ⊕ will  

belong to the set 

 1nW\ . 

The proof follows directly from Corollary 1, by virtue of (A4.1). 

Corollary 3. If for p,...,1,0m   of a defining sequence   there exists a 

subset  mWH \  such that )(F)H(F m



   then the kernel K ⊖ will belong 

to the set mW\ . The proof of Corollary 3 is entirely similar to that of Corol-

lary 1. It is only necessary to change the signs of the inequalities and replace 
the set n  by m . 

Corollary 4. If for 1p,...,1,0m   of a defining sequence   there exists a 

subset  mWH \  such that )(F)H(F m



  , then the kernel K ⊖ will belong 

to the set 

 1mW\ . 
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*i The name “Monotonic System” at that moment in the past was the best match for 
our scheme. However, this name “Monotone System” was already occupied in  
“Reliability Theory” unknown to the author. Below we reproduce a fragment of a 
“monotone system” concept different from ours in lines of Sheldon M. Ross “Intro-
duction to Probability Models”, Fourth Ed., Academic Press, Inc., pp. 406-407. 

Example  

(A four-
Component  
Structure):  

Consider a system consisting of four components, and suppose that the system func-
tions if and only if components 1 and 2  both function and at least one of components 
3  and 4  function. Its structure function is given by 

  
4321 x,xmax xx)x(  . 

Pictorially, the system is shown in Figure. A useful identity, easily checked, is that 
for binary variables, (a binary variable is one which assumes either the value 0  or 1) 

ix , n ,...,1i  , 

   



1i

in1 x11x,...,xmax . When 2n  , this yields 

     
21212121 xxxxx1x11x,xmax  . 

Hence, the structure function in the above example may be written as 

  
434321 xxxxxx)x(    

It is natural to assume that replacing a failed component by a functioning one never 
lead to a deterioration of the system. In other words, it is natural to assume that the 

structure function )x(  is an increasing function of x , that is, if ii yx  , 

n ,...,1i  , then )y()x(  . Such an assumption shall be made in this chapter and 

the system will be called monotone. 


	Chapter XII
	Abstract
	1. INTRODUCTION
	2. EXAMPLES OF MONOTONIC SYSTEMS
	I. Complex organization
	II. Adaptive antennas.
	III. Network of transportation
	IV. Academic research
	V. Multi-dimensional vector space

	3. DESCRIPTION OF A MONOTONIC SYSTEM
	4. EXTREMAL THEOREMS
	5. ROUTINE OF FINDING THE KERNELS
	6. DUALITY THEOREM
	7. KERNEL SEARCH BASED ON DUALITY
	8. DUAL KERNEL-SEARCH
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4
	LITERATURE CITED
	Foot Note



