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QKCTPEMAIBbHbIE NTOACUCTEMbI MOHOTOHHbLIX CUCTEM. |
U. 3. MYIINAT
(TannuH)

PaccmarpuBaeTcsi 00IIas TEOPETHYECKas MOJENb, NPEIHA3HAUYCHHAs U HAYaJbHOTO 3Talla aHallM3a CHCTEM
B3aMMOCBSI3aHHBIX DJI€MEHTOB. B pamkax MoOAeNH M HCXOAS W3 CIENUAIbHO IIOCTYJIHPOBAHHOTO CBOWCTBA
MOHOTOHHOCTH CHCTEM T'apaHTHUPYETCS CYIIECTBOBAHHE OCOOBIX IOACHCTEM — sjep. YCTaHABIMBAaeTCS Pl
9KCTPEMANIbHBIX CBOMCTB M CTPYKTypa siiep B MOHOTOHHBIX CHCTeMax. JleTanmsupyercs s3bIK OIMCAHHS
MOHOTOHHBIX CHCTEM B3aUMOCBSI3aHHBIX 3JIEMEHTOB Ha OOIIEM TEOPETHKO-MHO)KECTBEHHOM YPOBHE, M Ha €ro
OCHOBE BbIPA0ATHIBACTCS KOHCTPYKTHBHASI CHCTEMA TOHATUIH B CIy4ae CHCTEM C KOHEYHBIM YHCIIOM JJIEMEHTOB.
W3yudaercsi psiji CBOMCTB 0COOBIX KOHEUHbIX M10C/IEI0BATEILHOCTEI 3IEMEHTOB CHCTEMbI, C OMOIIBIO KOTOPBIX
OCYIIECTBIMO BBIJIEJIEHHE S/IEP B MOHOTOHHBIX CHCTEMAX.

1. BBenenne

IIpn m3ydeHHn MOBEOEHUS CIOKHOM CHCTEMBI YacTO MPUXOAUTCS CTAIKHUBATHCS C
3amadeil aHaN3a KOHKPETHBIX YMCIIOBBIX JAHHBIX O (YHKIMO-HUPOBAHHU cHcTeMbl. Ha
OCHOBE MOMOOHBIX JAHHBIX MHOTJA TPeOyeTCsl BBISICHUTB, CYIIECTBYIOT JIH B CHCTEMeE
0co0BIE ANIEMEHTHI MIIH MOACHCTEMBI 3JIEMEHTOB, PEarupylonX OJHOTHIIHO Ha KaKHe-
00 «BO3JEHCTBUS», a TAKKE «OTHOLICHHS» MEXTY OMHOTHIIHBIMHU ITOJICHCTEMaMH.
CBezieHUs O CYILIECTBOBAHUM YKa3aHHBIX 0COOEHHOCTEH MM O «CTPYKTYpPe» H3ydaeMoil
CHCTEMBI HEOOXOIUMBI, HAMpUMEp, A0 NMPOBEACHHS OOIIMPHBIX WM IOPOTOCTOSIINX
CTaTHCTHYECKUX MCCIIEOBAHUH.

B cBs3n ¢ MMpPOKUM IPHMEHEHHEM BBIYHCINTEIEHON TEXHUKH B HACTOAIIES BPeMs
Ha HAYaJIbHOM OJTalle BBIABICHUS CTPYKTYpbl CHCTEMbl HaMEuUaeTcs MOJXOJ, OCHO-
BaHHBIN Ha Pa3JIMYHOTO poJia IBpUCTHUECKUX Moaemsix [1-4]. [Ipu mocTpoenun moaenei
MHOT'A€ aBTOPbI UCXOAAT U3 COACPIKATEIIBHBIX IMOCTAHOBOK 3aJa4d, a TaKXKE U3 q)Oprl
MpeICTaBIeHI UCXOIHOM nHpopMaimu [5, 6].

EctecTBenHoit ¢opmoii mpenctaBneHus HHOOPMALUH IS LeNeH W3ydeHus
CIIOKHBIX cHcTeM sBisiercs: (opma Tpada [7]. PacmpocTpaHeHHBIM HOCHTEIEM
nH}pOpMaIMK CITy’>KUT TaKXKe MaTpHlla, HampUMep MaTpHla TaHHBIX [8]. Marpuip! n
rpadbl JIETKO IOMYCKAIOT BBIACICHUE JBYX MUHHMAJBHBIX CTPYKTYPHBIX €JHHHIL
CHCTEMBI: «3JIEMEHTOB» U «CBA3EH» MEXIy snemenTamu . B 1aHHOi pabote moHATHA
«CBSI3b» M <QIIEMEHT» TPAKTYIOTCS JOCTATOYHO IIMPOKO. Tak, MHPrAa >KemaTeslbHO
paccMaTpuBaTh CBA3M B BUJE SJIEMEHTOB CHCTEMBI; B 3TOM CIy4ae MOXKHO OOHAapyKUTb
Oonee «TOHKHE» 3aBHCHMOCTH B MCXOJHOW cucTeMe. IIpencraBieHne CHCTEMBI B BUJE
€IMHOTO 00BEKTa — HIJIEMEHTHI M CBSI3M MEXIY JJIEMEHTaMH — II03BOJISIET IPHIATh
OoJiee YETKUI CMBICT 3a/1aue BBISBICHUS CTPYKTYpBI CHCTeMBI. CTPYKTypa CHCTEMBI —
OTO TaKasd OpraHu3anusd 3JICMCHTOB CUCTEMbI B MOACHUCTEMBI, KOTOpas CKJIaAbIBACTCA B
BHJI€ MHOXXECTBAOTHOILICHUH MeXay moacucTeMamu. CTPyKTypoOil CHCTEMBI, HalIpUMeED,
MOXET OBITh €CTECTBEHHO CIOXKHBIIMICA CIOCOO OOBEIMHEHHMS TOJICHCTEM B €IHHYIO
CHCTeMy, KOTOPBIH OIpeenseTcs Ha OCHOBE (CHIIBHBIX» U «CIA0BIX» CBSI3eH MEXIy
JJIeMEHTaMH CHCTeMBI. [10J0OHBII MOX0 K aHaJIM3y CHCTEM OIIMCaH, HarpuMmep, B [9],
I7le paccMaTpUBAETCs. BOIPOC arperupoBaHUs CUCTEM B3aUMOCBSI3aHHBIX 3JIEMEHTOB.
ArperupoBaHue OKa3bIBaeTCs YHOOHBIM MAaKpOS3BIKOM ISl BCKPBITHS CTPYKTYpBI

CHUCTCMBI.

*
B Jmrepatype l'l0}106HB]C CHUCTEMBbI Ha3bIBAKOTCA CUCTEMAMH B3aUMOCBSA3aHHBIX JICMCHTOB.
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Extremal Subsystems of Monotonic Systems, I'

Abstract. A general theoretical method is described which is intended for the initial
analysis of systems of interrelated elements. Within the framework of the model, a
specially postulated monotonicity property for systems guarantees the existence of a
special kind of subsystems called kernels. A number of extremal properties and the
structure of the kernels are found. The language of description of monotonic systems of
interrelated elements is described in general set-theoretic terms and leads to a construc-
tive system of notions in the case of systems with finite number of elements. A series of
properties of special finite sequences of elements are studied whereby kernels in mono-
tonic systems are classified.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

For the study of a complex system, it is often necessary to encounter the prob-
lem of analyzing concrete numerical data about the system functioning. Some-
times based on similar data it is required to show whether in the system there
exist special elements or subsystems, reacting in one way to some “actions” as
well as “relations” between one-type subsystems. Information on the existence
of the indicated peculiarities or on the “structure” of the system under study is
necessary, for example, before carrying out extensive or expensive statistical
investigation.

Concerning wide application of computational techniques, at the present
time, to initial detection of the structure of a system an approach based on vari-
ous kind of heuristic models is planned (Braverman et al, 1974; McCormik,
1972; Deutch, 1971; Zahn, 1971). For constructing models, many authors start
with intuitive formulations of the problem and also with the form of presenta-
tion of the initial data (V&handu, 1964; Terent’ev, 1959).

A natural form of presentation the data for the purpose of studying complex
systems is that of a graph (Muchnik, 1974). A matrix, for example, a data ma-
trix (Hartigan, 1972) also serves as a widely spread carrier of information.
Matrices and graphs easily admit isolation of two minimal structural units of
the system: “elements” and “connections” between elements." In this paper the
notions “connections” and “elements” are interrelated in a sufficiently broad
fashion. Thus, sometimes it is desirable to consider connections in the form of
elements of a system; in this case, it is possible to find more “subtle” relations
in the original system.

Representation of the system in the form of a unique object — elements and
connections between elements — makes it possible to give a more precise
meaning to the problem of revealing the structure of the system. The structure
of a system is the organization of system elements into subsystems, which are
composed as a set of relationships between subsystems. The structure can, for
example, be a natural way of combining subsystems into a single system, which
is determined on the basis of "strong" and "weak" links between the elements

Analogous systems are called systems of interrelated elements in the literature.
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of the system. A similar approach to systems analysis is described (for exam-
ple, Braverman et al, 1971), where the issue of assembling systems from inter-
connected elements is considered. Assembly turns out to be a convenient macro
language for expressing the structure of a system.

In the theory of systems, usually direct connections between elements are
considered. Situation, however, sometimes requires considering indirect con-
nections as well. This requirement is distinguished thus: that indirect connec-
tions are dynamic relations in the sense that “degree” of dependence is deter-
mined by a subsystem, in which this or that connection is considered. Below we
describe and study a certain subclass of similar “dynamic” systems called
monotonic systems.

The monotonicity property for systems allows us to formulate in a general
form the concept of a kernel of a system as a subsystem, which in the originally
indicated sense reflects the structure of the whole system in the large. A kernel
represents a subsystem whose elements are “sensitive” in the highest degree to
one of two types of actions (positive or negative), since “sensibility” to actions
is determined by the intrinsic structure of the system. The definition of positive
and negative actions reduces to the existence of two types of kernels — positive
and negative kernels.

Existence of kernels (special subsystems) is guaranteed by the mathematical
model described in this paper and the problem of “isolating” kernels is typical
problem in the description of a “large” system in the language of a “small”
system — kernel. In this sense, figuratively speaking, a kernel of a system is a
subsystem whose removal inflicts “cardinal” changes the properties of that
system: The system "gives up" the existing structure.

For exposition of the material terminology and symbolism, the theory of
sets is used which requires no special knowledge. One should turn attention to
the special notation introduced, since the apparatus developed in this paper is
new.

2. EXAMPLES OF MONOTONIC SYSTEMS >

1. In the n -dimensional vector space let there be given N vectors. For
each pair of vectors X and y one can define in many ways a distance p(X,y)
between these vectors (i.e., to scale the space). Let us assume that the set of
given vectors forms an unknown system W .

Kempner, Y., Mirkin, B., and I.B. Muchnik. (1997) "Monotone linkage clustering
and quasi-concave set functions," Applied Mathematics Letters, 4, 19; B. Mirkin and
[.B. Muchnik. (2002) “Layered Clusters of Tightness Set Functions,” Applied
Mathematics Letters, v. 15, issue no. 2, pp. 147-151; see also, A. V. Genkin and

[.B. Muchnik. (Moscow, Boston, 1993) “Fixed Approach to Clustering, Journal of
Classification,” Springer, 10, pp. 219-240; and latest connection, Kempner, Y. and
V.E. Levit. (2003) “Correspondence between two antimatroid algorithmic characteri-
zations,” Dept. of Computer Science, Holon Academic Institute of Technology, July,
Israel.
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For every vector in an arbitrary subsystem of W we calculate the sum of
distances to all vectors situated inside the selected subsystem. Thus, with the
respect to each subsystem of W and each vector situated inside that subsys-
tem, a characteristic sum of distances is defined, which can be different for
different subsystems.

It is not difficult to establish the following property of the set of sums of
distances. Because of removing a vector from the subsystem the sums com-
puted for the remaining vectors decrease while because of adding a vector to
the subsystem they increase. A similar property of sums for every subsystem of
system W is called in this paper the monotonicity property and a system W
having such a property is called a monotonic system.

2. For studying schools, directions in various branches of science, the so-
called graphs of cited publications (Nalimov and Mul’chenko, 1969) are used.
These are directed a-cyclic graphs, since each author can cite only those authors
whose papers are already published. It is entirely reasonable to assume that the
set of publications W forms a certain system, where the system elements (pub-
lished papers) exchange with each other information by special way, namely,
by the help of citation. If we consider a subset from an available survey of the
set of publications W , then the number of bibliographical tittles can character-
ize each publication, taken only over the subset — subsystem — considered. It is
clear that “removal” of publication from the subsystem only decreases the
quantitative evaluation thus introduced for the degree of exchange of informa-
tion in the subsystem while the “addition” of a publication in the subsystem
only increases that evaluation for all publications in the subsystem. Thus, we
have here a monotonic citation system given in the form of a graph.

In connection with the above example, it is interesting to note
(Trybulets, 1970), where the author involuntarily considers an example of a
monotonic system in the form of a directed graph.

3. Let us assume that there is a set W of telephone exchanges or points of
connection that are joined by lines of two-sided connections. Under the absence
of any connection between points in a system with communications, it is possi-
ble to organize a transit connection. If a functioning of a similar system is ob-
served for a long time, then the “quality” of connection” between each pair of
points can be expressed, independently of whether there exists a two-sided
connection or not, by the average number of “denials” in establishing a connec-
tion between them in a standard unit of time. Generally speaking, if it is desired
to characterize each point of the system W in the sense of “unreliability” of
establishing connections with other points, then this second characteristic can
be taken to be the average number of denials in establishing connection with at
least one point of the system in a unit time. It is clear that these same numerical
qualities (quality of connection, unreliability characteristic) can be defined only
inside every subsystem of the system with communications W .
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The proposed model has the following obvious properties. A gap in any line
of two-sided connection increases the average number of denials among all
other points of connection; introduction of any new line, in contrast decreases
the average number of denials. This is related with the fact that load on the
realization of a transit connection in a telephone communication network in-
creases (decreases). In the case of curtailment of activity at any point of con-
nection inside the given subsystem the unreliability of all points of subsystem
increases while in case of addition of a point of connection to the subsystem the
unreliability decreases.

Thus, there is a complete similarity with the examples of monotonic sys-
tems considered above and one can state that the model described for telephone
communications is a monotonic system.

In the present paper a monotonic system is defined, to be a system over
whose elements one can perform “positive” and “negative” actions. In addition,
positive actions increase certain quantitative indicators of the functioning of a
system while the negative actions decrease those indicators. In the second ex-
ample considered above the positive action is the addition of an element to a
subsystem while the negative action is removing an element from the subsys-
tem; in the third example the converse holds.

In the second and third examples above, the kernel must have an intuitive
meaning. Thus, in the citation graphs, a negative kernel must turn out to be the
set of publications citing each other in a considerable degree (by authors repre-
senting a single scientific school) while a positive kernel must consist of publi-
cations citing each other to a lesser degree (representing different schools).

In telephone communications networks the intuitive sense of a kernel must
manifest itself in the following. If we take as elements of a communication
network the lines of connection, then a negative kernel is a collection of lines
that give on the average a “mutually agreed upon” large number of denials
while a positive kernel has the opposite sense — a collection of lines that give
on the average less denials. In case the system elements are taken to be the
connection points of a telephone communication network, a negative kernel is a
set of mutually unreliable points while a positive kernel is a set of more reliable
points.

The intuitive meaning given to kernels of citation graphs and communica-
tion network is not based on a sufficient number of experimental facts. The
indicated properties are noted in analogy with available intuitive interpretation
of kernels obtained for solutions of automatic-classification problems (Mullat,
1975).
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4. This excerpt elaborates on enhancing the efficiency of cellular networks
through spatial signal processing and adaptive antennas. It underscores the
intricate interplay among antenna arrays, processing algorithms, and resource
allocation for maximizing data throughput. By focusing on specific parametric
classes of antenna systems, optimization becomes more feasible, allowing for
the estimation of benefits from adaptive antennas. The text also introduces a
novel algorithm facilitating efficient grouping of subscribers based on angular
diversity, ensuring optimal resource utilization. The example is taken from the
article by Shorin, et al. 2016.

The introduction of spatial signal processing technology and adaptive an-
tennas makes it possible to significantly (manifold) increase the throughput of
the radio channel due to the active use of the resource associated with the capa-
bilities of spatial signal selection.

In the context of cellular networks, optimizing adaptive spatial processing
entails a shift from traditional approaches to achieving maximum throughput
for a radio channel connecting numerous spatially dispersed subscribers with a
serving base station. This shift emphasizes the interdependence of the antenna
array, spatial processing algorithm, radio channel resource distribution algo-
rithm, and data exchange algorithms, forming a unified hardware and software
module dedicated to solving the transmission problem. While the optimal de-
sign of antenna arrays and algorithms remains a question, practical simplifica-
tions can be made by constraining antenna systems to specific parametric
classes, such as ring homogeneous structures with adjustable placement radii
and radiation pattern widths.

The following approach facilitates optimization and allows estimation of the
benefits derived from using adaptive antennas, often through simulation. Fur-
thermore, the proposed algorithm in this article introduces a "mode with reverse
extraction of elements from groups," enabling the creation of minimal clusters
with desired angular diversity levels. Additionally, this mode facilitates the
distribution of subscribers in favorable locations across multiple groups, maxi-
mizing the utilization of available radio channel resources.

In the particular scenario of the “Monotone System” being addressed, the
algorithm outlined in this article offers a precise solution. This algorithm intro-
duces a "mode with reverse extraction of elements from groups," which serves
a dual purpose. Firstly, it enables the creation of the fewest possible groups or
clusters while maintaining a specified level of angular diversity. Secondly, it
facilitates the simultaneous allocation of individual subscribers situated in more
favorable locations across multiple groups. This approach ensures optimal
utilization of the available resources within the radio channel, maximizing
efficiency and performance.
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3. DESCRIPTION OF A MONOTONIC SYSTEM

One considers some system W consisting of a finite number of elements, * i.c.,
|W| = N, where each element o of the system W plays a well-defined role.

It is supposed that the states of elements o of W are described by definite
numerical quantities characterizing the “significance” level of elements o for
the operation of the system as a whole and that from each element of the system
one can construct some discrete actions.

We reflect the intrinsic dependence of system elements on the significance
levels of individual elements. The intrinsic dependence of elements can be
regarded in a natural way as the change, introducible in the significance levels
of elements [3, rendered by a discrete action produced upon element o, .

We assume that the significance level of the same element varies as a result
of this action. If the elements in a system are not related with each other in any
way, then it is natural to suppose that the change introduced by element & on
significance [ (or the influence of o on [3) equals zero.

We isolate a class of systems, for which global variations in the significance

levels introduced by discrete actions on the system elements bears a monotonic
character.

Definition. By a monotonic system, we understand a system, for which an
action realized on an arbitrary element o involves either only decrease or only
increase in the significance levels of all other elements.

In accordance with this definition of a monotonic system two types of ac-
tions are distinguished: type @ and type ©. An action of type & involves in-
crease in the significance levels while © involves decrease.

The formal concept of a discrete action on an element o of the system W
and the change in significance levels of elements arising in connection with it
allows us to define on the set of remaining elements of W an uncountable set
of functions whenever we have at least one real significance function
m: W — D (D being the set of real numbers).

Indeed, if an action is rendered on element o, the starting from the pro-

posed scheme one can say that function 7 is mapped into 7, or 7, according

as a the action @ or ©. Significance of system elements is redistributed as ac-
tion on element o changes from function © to 7, (n;) or, otherwise, the

initial collection of significance levels {n(8)| GEW} changes into a new

collection { n;(8)|66W}. * Clearly, if we are given some sequence

3 If W is a finite set, then |W| denotes the number of its elements.

Functions TT, TCZ and T, are defined on the whole set W  and, consequently,

7. (0) and m_(0) are defined.
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a,,d,,0,,.. of elements of W (arbitrary repetitions and combinations of
elements being permitted) and the binary sequence +,—,+,..., then by the usual

means one can define the functional product of functions . , T, , 7. in the
form ©' w w .

The construction presented allows us to write the property of monotonic

systems in the form of the following basic inequalities:
7 (9) 2 n(d) 2, (0) (1)
for every pair of elements o,0 € W , including the pairs o, o or 6,0.

Let there be given a partition of set W into two subsets, i.c, HUH=W
and HNH = . If we subject the elements o,a,,0,,...€ H to positive

actions only, then by the same token on set W there is defined some function
T T, T, ..., which can be regarded as defined only on the subset H of W .°

If from all possible sequences of elements of set H we select a sequence
<OL] ,ocz,...,am> , ® where o, are not repeated, then on the set H the function

+

T, T, ... is induced ambivalently.

o

We denote this function ©'H and call it a standard function. We shall also
refer to the function thus introduced as a credential function and to its value on
an element as an O credential.

In accordance with this terminology the set {7t+H(OL)| oe H}, which is

denoted by TT'H is called a credential collection given on the set H or a cre-
dential collection relative to set H. Let us assume that we are given a set of
credential collections {H+H| Hc W} on the set of all possible subsystems

P(W) of system W . The number of all possible subsystems is |P(W)| =2,

Instead of considering a standard function for positive actions 7 7. ... one

can consider a similar function for negative actions m H . Thus, one defines
single credential collection TT"H = {n’H(OL)| a EH} and the aggregate of

credential collections {H’H| Hc W} by an exact analogy.

5 . L. . .
We are not interested in significance levels obtained as a result of operations on

elements of H onto the same set H .

Here symbols <,> are used to stress the ordered character of a sequence of H .
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Let us briefly summarize the above construction. Starting with some real
function 7 defined on a finite set W and using the notion of positive and
negative actions on elements of system W , one can construct two types of
aggregate collections IT"H and ITH defined on each of the H of subsets of
W . Each function from the aggregate (credential collection) is constructed by
means of the complement to H, equaling W\H, and a sequence

<0L],(x2,...,(x > of distinct elements of the set H . For this actions of types @®

I
and © are applied to all elements of set H in correspondence with the ordered

sequence <(xl,ocz,...,oc‘ﬁ‘> in order to obtain IT'H and ITH respectively.

Credential collections/arrays concept of IT"H and IT H needs refinement.
The definition given above does not taken into account the character of de-
pendence of function TH on the sequence of actions realized on the elements

of set H.” Generally speaking, credential collection IT"H(IT'H) is not de-

fined uniquely, since it can happen that for different orderings of set H we
obtain different function wH .

In order that credential collection IT'"H (IT'H) be uniquely defined by

subset H of the set W it is necessary to introduce the notion of commutability
of actions.

Definition. An action of type @ or © is called commutative for system W
if for every pair of elements a,3 € W we have

+ +_+ - -
Traﬂ:ﬁ - Tcﬂﬂ:a > Traﬂ:ﬁ - Ttﬁna

In this case it is easy to show that the values of function TH on the set H
do not depend on any order defined for the elements of the set H by sequence
<ocI , 0, ,> . The proof can be conducted by induction and is omitted.

Thus, for commutative actions the function ©1'H (7w H) is uniquely deter-
mined by a subset of W .

In concluding this section, we make one important remark of an intuitive
character. As is obvious from the above-mentioned definition of aggregates of

credentials collection of type @ and ©, the initial credential collection serves as
the basic constructive element in their construction. The initial credential col-
lection is a significance function defined on the set of system elements before
the actions are derived from the elements. In other words, it is the initial state of

7

“_n

In the sequel, if sign or “+” is omitted from our notation, then it is under-
stood to be either “—” or “+”
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the system fixed by credential collection IT W . It is natural to consider only
those aggregates of credential collections that are constructed from an initial ®
collection, which is the same as the initial © collection. The dependence indi-

cated between @ and © credential collections is used considerably for the proof
of the duality theorem in the second part of this paper.

4. EXTREMAL THEOREMS. STRUCTURE OF EXTREMAL SETS 3

Let us consider the question of selecting a subset from system W whose ele-
ments have significance levels that are stipulated only by the internal “organi-
zation” of the subsystem and are numerically large or, conversely, numerically
small. Since this problem consists of selecting from the whole set of subsys-
tems P(W) a subsystem having desired properties, therefore it is necessary to

define more precisely how to prefer one subsystem over another.

Let there be given aggregates of credential collections {H*H| Hc W}
and {ITH| Hc W} On each subset there are defined the following two

functions:
FH)= max ' H(a), F(H) = min © H(a).

Definition of Kernels. By kernels of set W we call the points of global
minimum of function F, and of global maximum of function F .

A subsystem, on which F, reaches a global minimum is called a @ kernel

of the system W , while a subsystem on which F reaches a global maximum,

is called © kernel. Thus, in every monotonic system the problem of determin-
ing @ and © kernels is raised.

With the purpose of intuitive interpretation as well as with the purpose of
explaining the usefulness of the notion of kernels introduced above we turn
once again to the examples of citation graphs and telephone commutation net-
works.

The definition of the kernel can be formulated using the levels of signifi-
cance of the elements of the system, that is: the @ kernel is a subsystem of a
monotonic system, for which the maximum level among the levels of signifi-
cance is determined only by the internal organization of the system is the
minimum, and the © kernel is the subsystem for which the minimum level
among the same significance levels is the maximum.

See also, Muchnik, I., and L. Shvartser. (1990) "Maximization of generalized charac-
teristics of functions of monotone systems," Automation and Remote Control, 51,

1562-1572,.
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The definition of a kernel accords with the intuitive interpretation of a ker-
nel in citation graphs and telephone commutation networks. Thus, in citation
graphs a @ kernel is a subset (subsystem) of publications, in which the longest
list of bibliographical titles is at the same time very short; though not inside the
subset, but among all possible subsets of the selected set of publications
(among the very long lists). If in our subset of publications a very short list of
bibliographical titles is at the same time very long among the very short ones
relative to all the subsets, then it is a © kernel of the citation graph. It is clear
that a © kernel publications cite one another often enough, since for each pub-
lication the list of bibliographical titles is at any rate not less than a very short
one while a very short list is nevertheless long enough. In a & kernel the same
reason explains why in this subset one must find representatives of various

scientific schools.

In telephone commutation networks, one can consider two types of system
elements — lines of connections and points of connections. In a system consist-
ing of lines, a © kernel turns out to be a subset of lines, for which the lines with
the least number of denials in that subset are at the same time the lines with the
greatest number of denials among all possible sets of lines. This means that at
least the number of denials stipulates only by the internal organization of a sub-
network of lines of a © kernel is not less than the number of denials for lines
with the smallest number of denials and, besides, this number is large enough.
Hence one can expect that the number of denials for lines of a © kernel is suffi-
ciently large. Similarly one should expect a small number of denials for lines of
a @ kernel. Formulation for ® and © kernels for points of connection is exactly
the same as for the lines and is omitted here.

Before stating the theorems, we need to introduce some new definitions and
notations. Let ol = <a‘0’al""7ak—l> be an ordered sequence of distinct elements

of set W , which exhausts the whole of this set, i.e., K = |W| . From sequence

O we construct an ordered sequence of subsets of W in the form
= <H0’H|7"' H > with the help of the following recurrent rule H, =W,

> k-1

AE
H,=H\{};i=01..,k-2"

’ Sign \ denotes the subtraction operation for sets.
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Definition. Sequence o of elements of W is called a defining sequence
relative to the aggregate of credentials collections {ITH| Hc W} if there

0oL 0o

exists in sequence A _, a subsequence of sets I"_ = <1"’ I ... l"p’> , such that:

a) credential w H,(ct,) of an arbitrary element o, in sequence o , be-
longing to set I'; but not belonging to set 1" is strictly less than
values of F (I',)); 10

b) inset ' there does not exist a proper subset L, which satisfies the

strict inequality F (I')) <F (L).

A sequence o with properties a) and b) is denoted by o_. One similarly

defines a sequence o, .

c) arbitrary element o, in sequence O , belonging to set I'" but not be-

longing to set I is strictly greater than values of F (") ;

d) inset I/ there does not exist a proper subset L, which satisfies the

strict inequality F,(T',) > F (L).

Definition. Subset H. of set W is called definable if there exists a defin-

ing sequence o, such that H) =T.

Definition. Subset H' of set W is called definable if there exists a defin-
ing sequence o, such that H = r.

Below we formulate, but do not prove, a theorem concerning properties of
points of global maximum of function F . The proof is adduced in Appendix 1.

A similar theorem holds for function F,. In Appendix 1 the parallel proof for
function F, is not reproduced. The corresponding passage from the proof for

F to that of F, can be effected by simple interchange of verbal relations

“greater than” and “less than”, inequality signs “>” and “<”, “>”, “<” as well as
by interchange of signs “+” and “~”. The passage from definable set H. to H’

and from definition of sequence O , and OL_, is affected by what has just been

said.

' Here and everywhere, for simplification of expression, where it is required,

u_n

the sign or “+” is not used twice in notations. We should have written

F(T.) or E(I,).
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Theorem 1. On a definable set H' function F reaches a global maximum.
There is a unique definable set H'. All sets, on which a global maximum is
reached, lie inside the definable set H' .

Theorem 2. On a definable set H' function F, reaches a global minimum.
There is a unique definable set H’ . All sets, on which a global minimum is

reached, lie inside the definable set H' .

In the proof of Theorem 1 (Appendix 1) it is supposed that definable set H
exists. It is natural that this assumption, in turn, needs proof. The existence of

*

H_ is secured by a special constructive procedure. '
The proof of Theorem 2 is completely analogous to the proof of Theorem 1
and is not adduced in Appendix 1.

We present a theorem, which reflects a more refined structure of kernels of
W  as elements of the set P(W) of all possible subsets (subsystems) of set

W.

Theorem 3. The system of all sets in P(W), on which function F. (F+)

reaches maximum (minimum), is closed with the respect to the binary operation
of taking union of sets.

The proof of this theorem is given in Appendix 2 and only for the function
F . The assertion of the theorem for F . is established similarly.

Thus, it is established that the set of all @ kernels (© kernels) forms a
closed system of sets with respect to the binary operation of taking the unions.
The union of all kernels is itself a large kernel and, by the statements of Theo-
rems 1 and 2, is a definable set.

APPENDIX 1
Proof of Theorem 1. We suppose that a definable set H™ exists.

(Conducting the proof by contradiction) let us assume that there exists a set
L < W, which satisfies the inequality

F(H)<F(L). (A.1)
Thus two sets H and L are considered. One of the following statements
holds:
1) Either L/H" # &, which signifies the existence of elements in L, not
belonging to H';
2)or LcH .

""" This procedure will be presented in the second part of the article, since here only the

extremal properties of kernels and the structure of the set of kernels are established.
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We first consider 2). By a property of definable set H' there exists a defin-
ing sequence o of elements of set W with the property b) (cf. the definition
of OU_) such that the strict inequality F (H") <F (L) does not hold and, con-

sequently, only the equality holds in (A.1). In this case, the first and the third
statements of the theorem are proved. It remains only to prove the uniqueness
of H', whish is done after considering 1).

Thus, let L/H" # & and let us consider set H, — the smallest of those Hi
(i=0,1,...,.k—1) from the defining sequence o that include the set L/H".
Then the fact that H, is the smallest of the indicated sets implies the following:
there exists element A € L, suchthat Ae H ,but A ¢ H .

Below, we denote by 1(€2) the smallest of the indices of elements of defin-

ing sequence OL_ that belong to the set Q< W .

Let I'| be the last in the sequence of sets <F J'> , whose existence is guaran-

teed by the sequence «_. For indices t and i(I')) we have the inequality
t<i(l).

The last inequality means that in sequence of sets <F j'> there exists at least
one set I'_, which satisfies
(I

+1

y>t+1. (A2)

Without decreasing generality, one can assume that I is the largest among

s

such sets.

It has been established above that A€ H , but A ¢ H . Inequality (A.2)

shows that I'’ < H , since the opposite assumption I, > H ,, leads to the

+1 2

conclusion that i(I”)>t+1 and, consequently I is not the largest of the
sets, for which (A.2) holds.

Thus, it is established that I'_, © H, . Indeed, if I, < H,, then for indices
i(I' ) and t we have i(I_)>t.

Hence i(I'_)+1>t+1 and the inequality i(I})=i(I_)+1 implies
i(I7) 2 t+1. The last inequality once again contradicts the choice of set 1_:

as the largest set, which satisfies inequality (A.2).
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Thus, A¢I ,but Ael_,since e H , H I . On the basis of prop-

erty a) of the defining sequence o, we can conclude that
©H M) <ET), (A3)
where 0 <s<p.

Let us consider an arbitrary set I, (j=0,l,.,p—1) and an element
1€ FJ ~, which has the smallest index in the sequence o_. In other words, set
Fj’ starts from the element T in sequence o _. In this case, set Fj’ is a certain
set H, in the sequence of imbedded sets <Hi>. The definition of F (H) and

the property a) of defining sequence o._ implies that

F@)<nT(v)<E([,).
Hence
FT)<F@)<..<FE(T)
and as a corollary we have for ] = O,l,...,p

F_(Fj)SF_(Fp)zF_(H*), (A4)

since F; = Hi

Let peL and let credential m L(p) be minimal in the collection of cre-

dentials relative to set L . On the basis of inequalities (A.1), (A.3), and (A.4)
we deduce that

nH ) <nL(p)=F(L). (A.5)

Above, H  was chosen so that L < H . Recalling the fundamental

monotonicity property (1) for collection of credentials (the influence of ele-
ments on each other), it easy to establish that

T LA)<nH Q). (A.6)
Inequalities (A.5) and (A.6) imply the inequality
©L(A) < L(p),

i.e., there exists in the collection of credentials relative to set L a credential,
which is strictly less than the minimal credential.

A contradiction is obtained and it is proved that set L can only be a subset
of H™ and that all sets, distinct from H', on which the global maximum is also

reached, lie inside H' .
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It remains to prove that if a definable set H  exists, then it is unique. In-
deed, in consequence of what has been proved above we can only suppose that

some definable set H , distinct from H_, is includedin H_.

It is now enough to adduce arguments for definable set H  similar to those
adduced above for L, considering it as definable set H ; this implies that

H' < H . The theorem is proved. ®

APPENDIX 2

Proof of Theorem 3. Let O be the system of set in P(W), on which func-

tion F_reaches a global maximum, and let K, € Q and K, e Q2.

Since on K, and K, the function F reaches a global maximum, therefore
we might establish the inequalities

F(K,UK,)<F (K, F(K, UK,)<F(K,). (A7)

We consider element p e K, UK, , on which the value of function F on

set K, UK, , is reached, i.e.,

n K, UK, (n)=min n K, UK, (a).

aeK, UK,

If nekK,, then by rendering © actions on all those elements of set

K, UK,, that do not belong to K,, we deduce from the fundamental
monotonicity property of collections of credentials (1) the validity of the ine-

quality
K, (p)<mtK, UK, ().

Since the definition of F implies that F (K,)<n'K, (1) and by the
choice of element p we have m K, UK, (u)=F (K, UK,)), therefore we
deduce the inequality

F(K)<F(K, uk)).
Now from the inequality (A.7) it follows that
F(K)=F (K, uKk)).

If, however, it is supposed that p e K, , then © actions are rendered on

elements of K, UK, , not belonging to K, ; in an analogous way we obtain the
equality
F(K,)=F (K vK,),

which was proved. ®
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The name “Monotonic System” at that moment in the past was the best match for
our scheme. However, this name “Monotone System” was already occupied in
“Reliability Theory” unknown to the author. Below we reproduce a fragment of a
“monotone system” concept different from ours in lines of Sheldon M. Ross
“Introduction to Probability Models”, Fourth Ed., Academic Press, Inc., pp. 406-407.

Example ¢
(A four-

Component C :

Structure): "

Consider a system consisting of four components, and suppose that the system func-
tions if and only if components 1 and 2 both function and at least one of components

3 and 4 function. Its structure function is given by

(I)(X) =X, X, max (X33X4)‘
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Pictorially, the system is shown in Figure. A useful identity, easily checked, is that
for binary variables, (a binary variable is one which assumes either the value 0 or 1)

X ,1=1,...,n,

i

max (xl,...,x“)z 1- H(l - Xi).When n = 2, this yields

i=1

max(xl,xz)z1—(1—);I)~(l—xz)=xI +X, X, X,.

Hence, the structure function in the above example may be written as

¢(X)=X1'X2'(X3+X4_X3'X4)

It is natural to assume that replacing a failed component by a functioning one never
lead to a deterioration of the system. In other words, it is natural to assume that the
structure function ((X) is an increasing function of X, that is, if X <Yy,
i=1...,n,then ¢(X) < ¢(y). Such an assumption shall be made in this chapter and

the system will be called monotone.
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