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A Fast Algorithm for Finding Matching  

Responses in Survey Data Table 
Abstract. This article examines the intricacies of a greedy serialization algo-
rithm designed to scrutinize survey data tables full of untrusted records. These 
unreliable records inherent in human phenomena are revealed when survey 
data tables are generated from various studies in reality, covering a variety of 
questionnaires completed by data analysts in countless branches of human 
activity. The algorithm presented in the paper exhibits almost linear complex-
ity, and its efficiency depends exactly on the number of elements present in the 
table. Central to its effectiveness is the distinctive property of monotonicity,  
a defining feature that encapsulates a wide array of data typically collected in 
tabular formats, especially those that resemble Boolean tables. The algorithm  
implementation procedure includes a pragmatic recommendation designed to 
illuminate and decipher the subtleties of the analysis results, giving a tangible 
advantage to the interpretation process. 
Keywords: survey; boolean; data table; matrix. 

1.  INTRODUCTION 

Situations in which customer responses being studied are measured by means 
of survey data arise in the market investigations. They present problems for 
producing long-term forecasts because the traditional methods based on count-
ing the matching responses in the survey with a large customer population are 
hampered by unreliable human nature in the answering and recording process. 
Analysis institutes are making considerable and expensive efforts to overcome 
this uncertainty by using different questioning techniques, including private 
interviews, special arrangements, logical tests, “random” data collection, ques-
tionnaire scheme preparatory spot tests, etc. However, percentages of responses 
representing the statistical parameters rely on misleading human nature and not 
on a normal distribution. It appears thereby impossible to exploit the most 
simple null hypothesis technique because the distributions of similar answers 
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are unknown. The solution developed in this paper to overcome the hesitation 
effect of the respondent, and sometimes unwillingness, rests on the idea  
of searching so-called “agreement lists” of different questions. In the agree-
ment list, a significant number of respondents do not hesitate in choosing the 
identical answer options, thereby expressing their willingness to answer. These  
respondents and the agreement lists are classified into some two-dimensional 
lists – "highly reliable blocks". 

For survey analysts with different levels of research experience, or for the 
people mostly interested in receiving results by their methods, or merely for 
those who are familiar with only one, "the best survey analysis technique", our 
approach has some advantages. Indeed, in the survey, data are collected in such 
a way that can be regarded as respondents answering a series of questions. A 
specific answer is an option such as displeased, satisfied, well contented, etc. 
Suppose that all respondents participating in the survey have been interviewed 
using the same questionnaire scheme. The resulting survey data can then be 
arranged in a table  q ixX , where q ix  is a Boolean vector of options avail-

able, while the respondent i  is answering the question q . In this respect, the 

primary table X  is a collection of Boolean columns where each column in the 
collection is filled with Boolean elements from only one particular answer 
option. Our algorithm will always try to detect some highly reliable blocks in 
the Table X  bringing together similar columns, where only some trustworthy 
respondents are answering identically. Detecting these blocks, we can separate 
the survey data. Then, we can reconstruct the data back from those blocks into 
the primary survey data table  q ixX  format, where some "non-matching/ 

doubtful" answers are removed. Such a "data-switch" is not intended to replace 
the researchers’ own methods, but may be complementary used as a "prelimi-
nary data filter” – separator. The analysts’ conclusions will be more accurate 
after the data-switch has been done because each filtered data item is a repre-
sentative for some "well known sub-tables". 

Our algorithm in an ordinary form dates back to Mullat (1971). At first 
glance, the ordinary form seems similar to the greedy heuristic (Edmonds 
1971), but this is not the case. The starting point for the ordinary version of the 
algorithm is the entire table from which the elements are removed. Instead, the 
greedy heuristic starts with the empty set, and the elements are added until 
some criterion for stopping is fulfilled. However, the algorithm developed in 
the present paper is quite different. The key to our paper is that the properties 
of the algorithm remain unchanged under the current construction. For match-
ing responses in the Boolean table, it has a lower complexity. 

The monotone property of the proposed technique – “monotone systems 
idea” – is a common basis for all theoretical results. It is exactly the same prop-
erty (iii) of submodular functions brought up by Nemhauser et al (1978, p.269). 
Nevertheless, the similarity does not itself diminish the fact that we are study-
ing an independent object, while the property (iii) of submodular set functions 
is necessary, but not sufficient. 
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From the very start, the theoretical apparatus called the "monotone system" 
has been devoted to the problem of finding some parts in a graph that are more 
"saturated" than any other part with "small" graphs of the same type (see Mul-
lat, 1976). Later, a Markov chain replaced the graph presentation form where 
the rows-columns may be split implementing the proposed technique into some 
sequence of submatrices (see Mullat, 1979). There are numerous applications 
exploiting the monotone systems ideas; see Ojaveer et al (1975). Many authors 
have developed a thorough theoretical basis extending the original conception 
of the algorithm; see Libkin et al (1990) and Genkin and Muchnik (1993). 

The rest of the paper is organized as follows. In Section 2, a reliability crite-
rion will be defined for blocks in the Boolean table B . This criterion guaran-
tees that the shape of the top set of our theoretical construction is a sub-matrix 
– a block; see the Proposition 1. However, the point of the whole monotone 
system idea is not limited by our specific criterion as described in Section 2. 
This idea addresses the question: How to synthesize an analysis model for data 
matrix using quite simple rules? In order to obtain a new analysis model, the 
researcher has only to find a family of  -functions suitable for the particular 
data. The shape of top sets for each particular choice of the family of 
 -functions might be different; see the note prior to our formal construction. 
For practical reasons, especially in order to help the process of interpretation of 
the analysis results, in Section 3 there are some recommendations on how to 

use the algorithm on the somewhat extended Boolean tables 
B . Section 4 is 

devoted to an exposition of the algorithm and its formal mathematical proper-
ties, which are not yet utilized widely by other authors. 

2.  RELIABILITY CRITERION 

In this Section we deal with the criterion of reliability for blocks in the Boolean 
tables originating from the survey data. In our case we analyze the Boolean 
table  j ibB  representing all respondents  n,...,i ,...,1 , but including only 

some columns  m,...j,...,1  from the primary survey data table  q ixX ; see 

above. The resulting data of each table B  can be arranged in a mn  matrix. 
Those Boolean tables are then subjected to our algorithm separately, for which 
reason there is no difference between any sub-table in the primary survey data 
and a Boolean table. A typical example is respondent satisfaction with services 

offered, where 1b j i   if respondent i  is satisfied with a particular service j  

level, and 0b j i   if he is unsatisfied. Thus, we analyze any Boolean table of 

the survey data independently. 

Let us find a column j  with the most significant frequency F  of 

1-elements among all columns and throughout all rows in table B . Such rows 
arrange a 1g   one-column sub-table pointing out only those respondents who 
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prefer one specific most significant column j . We will treat, however, a more 

general criterion. We suggest looking at some significant number of respon-
dents where at least F  of them are granting at least g  Boolean 1 - elements in 

each single row within the range of a particular number of columns. Those 
columns arrange what we call an agreement list, ,...3,2g  ; g  is an agreement 

level. 

The problem of how to find such a significant number of respondents, 

where the F  criterion reaches its global maximum, is solved in Section 4. An 
optimum table *S , which represents the outcome of the search among all “sub-

sets” H  in the Boolean table B , is the solution; see Theorem I. The main 

result of the Theorem I ensures that there are at least F  positive responses in 
each column in table *S . No superior sub-table can be found where the number 

of positive responses in each column is greater F . Beyond that, the agreement 
level is at least equal to ,...3,2g   in each row belonging to the best sub-table 

*S ; g  is the number of positive responses within the agreement list repre-

sented by columns in sub-table *S . In case of an agreement level 1g  , our 

algorithm in Section 4 will find out only one column j  with the most signifi-

cant positive frequency F  among all columns in table B  and throughout all 

respondents, see above. Needless to say that it is worthless to apply our algo-
rithm in that particular case 1g  , but the problem becomes fundamental as 

soon as ,...3,2g  . 

Let us look at the problem more closely. The typical attitude of the respon-
dents towards the entire list of options — columns in table B  — can be easily 

"accumulated" by the total number of respondent i  positive hits selected: 





m,...,1j

j ii br . 

Similarly, each column – option can be measured by means of the entire 
Boolean table B  as 





n,...,1i

j ij bc . 

It might appear that it should be sufficient to choose the whole table B  to 

solve our problem provided that n,1i,gri  . Nevertheless, let us look 

throughout the whole table and find the worse case where the number 

m,1j,cj   reaches its minimum F . Strictly speaking, it does not mean that the 

whole table B  is the best solution just because some "poor" columns (options 
with rare responses – hits) may be removed in order to raise the worst-case 
criterion F  on the remaining columns. On the other hand, it is obvious that 
while removing "poor" columns, we are going to decrease some ir  numbers, 
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and now it is not clear whether in each row there are at least ,...3,2g   posi-

tive responses. Trying to proceed further and removing those "poor" rows, we 
must take into account that some of jc  numbers decrease and, consequently, 

the F  criterion decreases as well. This leads to the problem of how to find the 
optimum sub-table *S , where in the worst-case F  criterion reaches its global 
maximum? The solution is in Section 4. 

Finally, we argue that the intuitively well-adapted model of 100% matching 
1-blocks is ruled out by any approach trying to qualify the real structure of the 
survey data. It is well known that the survey data matrices arising from ques-
tionnaires are fairly empty. Those matrices contain plenty of small 100% 
matching 1-blocks, whose individual selection makes no sense. We believe 
that the local worst-case criterion F  top set, found by the algorithm, is a rea-
sonable compromise. Instead of 100% matching 1-blocks, we detect somewhat 
blocks less than 100% filled with 1-elements, but larger in size. 

3.  RECOMMENDATIONS 

We consider the interpretation of the survey analysis results as an essential part 
of the research. This Section is designed to give guidance on how to make the 
interpretation process easier. In each survey data it is possible to conditionally 
select two different types of questions: (1) The answer option is a fact, event, 
happening, issue, etc.; (2) The answer is an opinion, namely displeased, satis-
fied, well contented etc.; see above. It does not appear from the answer to op-
tions of type 1, which of them is positive or negative, whereas type 2 allows us 
to separate them. The goal behind this splitting of type 2 opinions is to extract 
from the primary survey data table two Boolean sub-tables: table B , which 
includes type 1 options mixed with the positive options from type 2 questions, 
and table B  where type 1 options are mixed together with the negative type 2 
options – opinions. It should be noticed that doing it this way, we are replacing 
the analysis of primary survey data by two Boolean tables where each option is 
represented by one column. Tables B  and B  are then subjected to the algo-
rithm separately. 

To initiate our procedure, we construct a sub-table 

1K  implementing the 

algorithm on table B . Then, we replace sub-table 

1K  in B  by zeros, con-

structing a restriction of table B . Next, we implement the algorithm on this 
restriction and find a sub-table 

2K , after which the process of restrictions and 

sub-tables sought by the algorithm may be continued. For practical purposes 
we suggest stopping the extraction with three sub-tables: 

1K , 

2K  and 

3K . 

We can use the same procedure on the table B , extracting sub-tables 

1K , 


2K  and 

3K . 
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The number of options-columns in the survey Boolean tables B  is quite 
significant. Even a simple questionnaire scheme might have hundreds of op-
tions – the total number of options in all questions. It is difficult, perhaps al-
most impossible, within a short time to observe those options among thousands 
of respondents. Unlike Boolean tables B , the sub-tables 

3,2,1K  have reason-

able dimensions. This leads to the following interpretation opportunity: the 
positive options in 

3,2,1K  tables indicate some most successful phenomena in 

the research while the negative options in 

3,2,1K  point in the opposite direction. 

Moreover, the positive and negative sub-tables 

3,2,1K  enable the researcher in a 

short time to “catch” the “sense” in relations between the survey options of 
type 1 and positive/negative options of the type 2. For instance, to observe all 
Pearson’s r correlations a calculator has to perform )mn(O 2  operations de-

pending on the mn  table dimension, n -rows and m -columns. The reason-
able dimensions of the sub-tables 

3,2,1K  can reduce the amount of calculations 

drastically. Those sub-tables – blocks 

3,2,1K , which we recommend to select in 

the next Section as index-function )H(F  top sets found via the algorithm, are 

not embedded and may not have intersections; see the Proposition 1. Concern-
ing the interpretation, it is hoped that this simple approach can be of some use 
to researchers in elaborating their reports with regard to the analysis of results. 

4.  DEFINITIONS AND FORMAL MATHEMATICAL PROPERTIES 

In this Section, our basic approach is formalized to deal with the analysis of the 
Boolean mn  table B , n -rows and m -columns. Henceforth, the table B  
will be the Boolean table B  – see above – representing certain  
options-columns in the survey data table. Let us consider the problem of how 
to find a sub-table consisting of a subset maxS  of the rows and columns in the 

original table B  with the properties: (1) that  
j

j ii gbr  and (2) the mini-

mum over j  of 
i

j ij bc  is as large as possible, precisely – the global maxi-

mum. The following algorithm solves the problem. 

Algorithm. 

Step I. Set up the initial values. 
 1i. Set minimum and maximum bounds a , b  on threshold 

  u  for jc  values. 

Step A. To find that the next step B produces a non-empty  
   sub-table.  
 1a. Using step B, test u  as 2/)ba(  . 

 If it succeeds, replace a  by u . If it fails replace b  
  by u . 

 2a. Go to 1a. 
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Step B. To test whether the minimum over j  can be at least u . 

 1b. Delete all rows whose sums gri  . 

  This step B fails if all must be deleted; return to step A. 
 2b. Delete all columns whose sums ucj  . 

 This step B fails if all must be deleted, return to step A. 
 3b. Perform step T if none deleted in 1b and 2b;  

otherwise go to 1b. 
Step T.  Test that the global maximum is found. 

 1t. Among numbers jc  find the minimum. 

 With this new value as u  test performing step B. 
 If it succeeds, return to step A, otherwise final stop. 

Step B performed through the step T tests correctly whether a sub-matrix of 
B  can have the rows sums at least g  and the column sums at least u . Remov-

ing row i , we need to perform no more than m  operations to recalculate jc  

values; removing column j , we need no more than n -operations. We can 

proceed through 1b no more than n -times and through 2b, m -times. Thus, 
the total number of operations in step B is )mn(O  . The step A tests the step 

B no more than nlog2  times. Thus, the total complexity of the algorithm is 

)nmnO(log2   operations. 

Note. It is important to keep in mind that the algorithm itself is a particular 
case of our theoretical construction. As one can see, we are deleting rows and 
columns including their elements all together, thereby ensuring that the out-
come from the algorithm is a sub-matrix. But, in order to expose the properties 
of the algorithm, we look at the Boolean elements separately. However, in our 
particular case of  -functions it makes no difference. The difference will be 
evident if we utilize some other family of  -functions, for instance 

)c,rmax(c jij . We may detect top binary relations, which we call kernels, 

different from submatrices. It may happen that some kernel includes two blocks 
– one quite long in the vertical direction and the other – in the horizontal. All 
elements in the empty area between these blocks in some cases cannot be added 
to the kernel. In general, we cannot guarantee either the above low complexity 
of the algorithm for all families of  -functions, but the complexity still  
remains in reasonable limits. 

We now consider the properties of the algorithm in a rigorous mathematical 
form. Below we use the notation BH  . The notation H  contained in B  will 

be understood in an ordinary set-theoretical vocabulary, where the Boolean 

table B  is a set of its Boolean 1-elements. All 0 -elements will be dismissed 
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from the consideration. Thus, H , as a binary relation, is also a subset of a 

binary relation B . However, we shall soon see that the top binary relations – 

kernels from the theoretical point of view are also sub-matrices for our specific 

choice of  -functions. Below, we refer to an element we assume that it is a 

Boolean 1-element. 

For an element B  in the row i  and column j  we use the similarity  

index jc  if gri   and 0  if gri  , counting only on Boolean ele-

ments belonging to H . The value of   depends on each subset BH   and 

we may thereby write )H,( : the set H  is called the  -function  

parameter. The  -function values are the real numbers – the similarity indices. 

In Section 2 we have already introduced these indices on the entire table B . 

Similarity indices, as one can see, may only concurrently increase with the 

“expansion” and decrease with the “shrinking” of the parameter H . This leads 

us to the fundamental definition. 

Definition 1. Basic monotone property. By a monotone system will be un-
derstood a family  BH:)H,(   of  -functions, such that the set H  is to 

be considered as a parameter with the following monotone property: for any 

two subsets GL   representing two particular values of the parameter H  
the inequality )G,()L,(   holds for all elements B . 

We note that this definition indicates exactly that the fulfilment of the ine-

quality is required for all elements B . However, in order to prove the 

Theorems 1,2 and the Proposition 1, it is sufficient to demand the inequality 

fulfillment only for elements L ; even the numbers   themselves may not 

be defined for L . On the other hand, the fulfillment of the inequality is 

necessary to prove the argument of the Theorem 3 and the Proposition 2. It is 
obvious that similarity indices jc  comply with the monotone system  

requirements. 

Definition 2. Let )H(V  for a non-empty subset BH   by means of a 

given arbitrary threshold u  be the subset   u)H,(:B)H(V . 

The non-empty H -set indicated by S  is called a stable point with reference to 
the threshold u  if )S(VS   and there exists an element  S , where 

 u)S,( . See Mullat (1981, p.991) for a similar concept. 

Definition 3. By monotone system kernel will be understood a stable set *S  

with the maximum possible threshold value max

* uu  . 
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We will prove later that the very last pass through the step T detects the 
largest kernel *

p S . Below we are using the set function notation 

)X,(min)X(F X   . 

Definition 4. An ordered sequence 1d10 ,...,,   of distinct elements in 

the table B, which exhausts the whole table,  j,i j ibd , is called a defining 

sequence if there exists a sequence of sets p10  . . .  such that: 

A. Let the set  
1d1kkk ,...,,=H   . The value )H,( kk  of an arbi-

trary element jk  , but 1jk   is strictly less than )(F 1j , 

1p,...,1,0j  . 

B. In the set p  there does not exist a proper subset L , which satisfies the 

strict inequality )L(F<)(F p . 

Definition 5. A subset *D  of the set B  is called definable if there exists a 
defining sequence 1d10 ,...,,   such that *

p D . 

Theorem 1. For the subset *S  of B  to be the largest kernel of the mono-

tone system – to contain all other kernels – it is necessary and sufficient that 

this set is definable: ** DS  . The definable set *D  is unique. 

We note that the Theorem 3 will establish the existence of the largest kernel 

later. 

Proof. 

Necessity. If the set *S  is the largest kernel, let's look at the following  

sequence *

10 SB   of only two sets. Suppose we have found elements 

k10 ,...,   in *SB\  such that for each k,1i   the value 

 ),...,B,( 1i0i  \  is less than max

o uu   and k10 ,...,   does not  

exhaust *SB\ . Then, in    
k0

* ,...,SB \\  some 1k  exists such that 

   *

k0

*

1k u,...,)SB,(   \\ . Otherwise, the set    
k0

* ,...,SB \\  is 

a larger kernel than with the same value *u . Thus, the induction is complete. 

This gives the ordering with the property (a). If the property (b) failed, then 
*u  would not be a maximum, contradicting the definition of the kernel. This 

proves the necessity. 

Sufficiency. Note that every time the algorithm — see above — goes 
through step T, some stable point, a set S  is put in the form of a set  Sj  , 

1p,...,1,0j  , where )S,(minuu o

Sj o 


. Obviously, these stable 
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“layering" points (stable sets) form an embedded chain of sets 
*

p10 D...B  . Let the set BL   be the largest core. Suppose 

that this L  is a proper subset of *D , then by property (b) )L(F)D(F *   and 

hence *D  is also a kernel. The set L  as the largest kernel cannot be a proper 
subset of *D  and therefore must be equal to *D . 

Suppose now that L  is not the subset of *D . Let sH  be the smallest set 

 11   dkkk ,...,,=H , which includes L . The value )H,( ss  by our 

basic monotone property must be grater than, or at least equal to 
*u , since s  

is an element of sH  and it is also an element of the kernel L  and sHL  . By 

property (a) this value is strictly less than )(F 1j  for some 1p,...,1,0j  . 

But that contradicts the maximality of *u . This proves the sufficiency. More-

over, it proves that any largest kernel equals 
*D  so that it is the unique largest 

kernel. This concludes the proof.  

Proposition 1. The largest kernel is a sub-matrix of the table B . 

Proof. Let *S  be the largest kernel. If we add to *S  any element lying in a 

row and a column where *S  has existing elements, then the threshold value *u  

cannot decrease. So by maximality of the set *S  this element must already be 

in *S .  

Now, we need to focus on the individual properties of the sets 

p10 ...  , which have a close relation to the case maxuu   – a sub-

ject for a separate inquiry. Let us look at the step T of the algorithm originating 
the series of mapping initiating from the whole table B  in form of 

),...B(V(V),B(V  with some particular threshold u . We denote ))B(V(V  

by )B(V2 , etc.  

Definition 6. The chain of sets ),...B(V),B(V,B 2  with some particular 

threshold u is called the central series of monotone system; see Mullat (1981) 
for exactly the same notion. 

Theorem 2. Each set p10 ...   in the defining sequence 

1d10 ,...,,   is the central series convergence point )B(Vlim k

,...3,2k  as well 

as the stable point for some particular thresholds values 
)S(Fu...uu)W(F *

n10  . Each j  is the largest stable point – in-

cluding all others for threshold values )(Fuu jj  . 

It is not our intention to prove the statement of Theorem 2 since this proof 

is similar to that of Theorem 1. Theorem 1 is a particular case for Theorem 2 
statement regarding threshold value puu  . 
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Next, let us look at the formal properties of all kernels and not only the 

largest one found by the algorithm. It can easily be proved that with respect to 

the threshold pmax uu   the subsystem of all kernels classifies a structure, 

which is known as an upper semilattice in lattice theory. 

Theorem 3. The set of all kernels – stable points – for maxu  is a full semi-

lattice. 

Proof. Let   be a set of kernels and let 1K  and 2K . Since the 

inequalities u)K,( 1  , u)K,( 2   are true for all 1K  and 2K  elements 

on each 21 K,K  separately, they are also true for the union set 21 KK   due to 

the basic monotone property. Moreover, since maxuu  , we can always find an 

element 21 KK   where u)KK,( 21  . Otherwise, the set 21 KK   

is some H -set for some u  greater than maxu . Now, let us look at the sequence 

of sets )KK(V 21

k  , ,...3,2k  , which certainly converges to some non 

empty set – stable point K . If there exists any other kernel 21 KKK  , it 

is obvious, that applying the basic monotone property we get that KK  .  

With reference to the highest-ranking possible threshold value maxp uu  , 

the statement of Theorem 3 guarantees the existence of the largest stable point 

and the largest kernel 
*S  (compare this with equivalent statement of Theo-

rem 1). 

Proposition 2. Monotone system Kernels are sub-tables of the table B . 

Proof. The proof is similar to proposition 1. However, we intend to repeat 

it. In the monotone system all elements outside a particular kernel lying in a 

row and a column where the kernel has existing elements belong to the kernel. 

Otherwise, the kernel is not a stable point because these elements may be added 
to it without decreasing the threshold value maxu . 

Note that Propositions 1,2 are valid for our specific choice of similarity  
indices jc . The point of interest might be to verify what  -function prop-

erties guarantee that the shape of the kernels still is a sub-matrix. The defining 

sequence of table B  elements constructed by the algorithm represents only 
some part p210 u...uuu   of the threshold values existing for central 

series in the monotone system. On the other hand, the original algorithm,  

Mullat (1971), similar to the inverse Greedy Heuristic, produces the entire set 
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of all possible threshold values u  for all possible central series, what is some-

times unnecessary from a practical point of view. Therefore, the original algo-

rithm always has the higher complexity. 
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